Présentation
EnglishRÉSUMÉ
La topologie générale est la branche des mathématiques qui traite des notions fondamentales utilisées en topologie et de leurs propriétés. Les intérêts théoriques et applicatifs se situent dans toutes les branches de l’analyse et de la géométrie, et pour d’autres disciplines scientifiques non mathématiques. Cet article porte sur les espaces métriques qui sont des ensembles dans lesquels les distances entre points sont rigoureusement définies, et qui sont des espaces topologiques très utiles. Ensuite sont présentés les concepts topologiques majeurs de séparation, dénombrabilité, de compacité, et de connexité dans le cadre des espaces métriques et le concept de bornitude. La métrisabilité et les théorèmes du point fixe constituent la fin de cet article.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Charles PINOLI : Professeur - École Nationale Supérieure des Mines de Saint-Étienne, Saint-Étienne, France - À Andrée-Aimée Toucas pour son support bibliographique. - Au Professeur Yann Gavet pour son intérêt scientifique.
INTRODUCTION
La topologie générale est présentée en une série de six articles ; les deux premiers [AF97] [AF98] portant sur les espaces topologiques, les deux suivants [AF120] [AF121] sur les espaces métriques, et les deux derniers [AF122] [AF123] détaillant près de 150 exemples d’espaces topologiques/métriques possédant ou non les différentes notions topologiques/métriques présentées dans les articles susmentionnés.
La lecture des deux articles de la série portant sur les espaces topologiques [AF97] et [AF98] n’est pas un prérequis, mais est recommandée. Le lecteur pourra s’y référer pour consulter un ou plusieurs points particuliers.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
8. Notions de connexité
8.1 Connexités
Dans un espace métrique, une boule n’est pas nécessairement connexe par chemins (p. 225 de ).
Théorème de Mazurkiewicz (1913, 1916), de Moore (1916) et de Menger (1929). Un espace métrique complet et localement connexe est localement connexe par chemins (p. 254 de ).
Théorème de Hahn (1914) et Mazurkiewicz (1920). Un espace topologique non vide séparé T 2 est l’image par une application continue de l’intervalle unité [0,1] de si et seulement s’il est compact, connexe, localement connexe, et métrisable (Mardešić, 1960) (p. 206 de , p. 180 de , p. 11 de ).
Il existe un nombre infini d’espaces métriques compacts et connexes (p. 387 de ...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Notions de connexité
BIBLIOGRAPHIE
-
(1) - AARTS (J.M.), NISHIURA (T.) - Dimension and Extensions, - North Holland, 331 pages (1993).
-
(2) - ADAMS (C.), FRANZOSA (R.) - Introduction to Topology Pure and Applied, - Pearson, 507 pages (2008).
-
(3) - ADAMSON (I.T.) - A General Topology Workbook, - Springer, 152 pages (1993).
-
(4) - ALEXANDROFF (P.), URYSOHN (P.) - Mémoire sur les espaces topologiques compacts, Verhandelingen der Koninklijke Nederl. Akademie van Wetenschappen te Amsterdam, - Sect. I, 14, pp. 1-96 (1929).
-
(5) - AMBROSIO (L.), TILLI (P.) - Topics on Analysis in Metric Spaces, - Oxford University Press, 133 pages (2004).
-
(6) - APPERT (A.) - Propriétés des espaces abstraits les plus généraux : Ensembles ouverts, fermés, denses en soi, clairsemés,...
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Mathématiques
(167 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive