La transformation de Fourier sur la droite réelle
est l’analogue de la transformation de Fourier des fonctions périodiques localement intégrables, où les exponentielles :
sont remplacées par la famille continue des exponentielles :
et où l’intégration sur un intervalle période est remplacée par l’intégration sur
tout entier.
D’ailleurs, un physicien dirait qu’une fonction définie sur
est une fonction périodique de période infinie (!), et on peut donner une présentation unifiée des séries et intégrales de Fourier dans le cadre abstrait des groupe abéliens localement compacts. Il n’en demeure pas moins que, dans le cas des séries de Fourier, le groupe de base est le groupe compact des réels modulo 2π, alors que, dans le cas des intégrales de Fourier, ce groupe de base est le groupe non compact des réels. Il s’agit là, comme on le verra, d’une différence majeure ; même si, dans les deux cas, la convolution est transformée en la multiplication ordinaire, ce qui est un outil puissant pour la résolution des équations aux dérivées partielles, les phénomènes sont souvent fort différents ; par exemple, il n’y a plus toujours unicité pour l’équation de chaleur avec donnée initiale, ou bien les bases orthonormales qui entrent en jeu n’ont rien de semblable : base des exponentielles en dans le cas des séries de Fourier, base des fonctions d’Hermite dans le cas des intégrales de Fourier, etc.
En conséquence, malgré les similitudes entre les deux théories, il semble préférable d’en donner des expositions séparées.
Nota :
le lecteur pourra se reporter à la référence bibliographique pour la présentation unifiée des séries et intégrales de Fourier dans le cadre abstrait des groupes abéliens localement compacts.
Cet article est réservé aux abonnés. Il vous reste 95% à découvrir.