Présentation
En anglaisAuteur(s)
-
Hervé QUEFFÉLEC : Professeur de mathématiques à l’’Université de Lille
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La transformation de Fourier sur la droite réelle est l’analogue de la transformation de Fourier des fonctions périodiques localement intégrables, où les exponentielles :
sont remplacées par la famille continue des exponentielles :
et où l’intégration sur un intervalle période est remplacée par l’intégration sur tout entier.
D’ailleurs, un physicien dirait qu’une fonction définie sur est une fonction périodique de période infinie (!), et on peut donner une présentation unifiée des séries et intégrales de Fourier dans le cadre abstrait des groupe abéliens localement compacts. Il n’en demeure pas moins que, dans le cas des séries de Fourier, le groupe de base est le groupe compact des réels modulo 2π, alors que, dans le cas des intégrales de Fourier, ce groupe de base est le groupe non compact des réels. Il s’agit là, comme on le verra, d’une différence majeure ; même si, dans les deux cas, la convolution est transformée en la multiplication ordinaire, ce qui est un outil puissant pour la résolution des équations aux dérivées partielles, les phénomènes sont souvent fort différents ; par exemple, il n’y a plus toujours unicité pour l’équation de chaleur avec donnée initiale, ou bien les bases orthonormales qui entrent en jeu n’ont rien de semblable : base des exponentielles en dans le cas des séries de Fourier, base des fonctions d’Hermite dans le cas des intégrales de Fourier, etc.
En conséquence, malgré les similitudes entre les deux théories, il semble préférable d’en donner des expositions séparées.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Espace de Schwartz
5.1 Fonctions régulières et rapidement décroissantes sur ; espace
Nous avons déjà mentionné 1.4, après la preuve de la proposition 2, que la transformation de Fourier a tendance à échanger les propriétés de régularité et de décroissance (décroissance n’étant pas à prendre au sens des fonctions monotones, mais au sens de la vitesse avec laquelle on tend vers zéro quand la variable tend vers l’infini) : si f est régulière, est décroissante ; si f est décroissante est régulière.
L’idée fondamentale de Schwartz est de considérer la classe des fonctions ayant les deux propriétés à la fois : très régulières et très décroissantes. Alors, par ce qui précède, cette classe sera complètement invariante par la transformation de Fourier, et tous les calculs algébriques qu’on pourra y faire seront automatiquement corrects, sans qu’il soit nécessaire à chaque fois de les justifier à l’aide de tel ou tel théorème de convergence ; on est donc mené à la définition suivante.
Définition 2. L’espace de Schwartz est l’espace des fonctions telles que :
a) f est indéfiniment dérivable (c’est-à-dire très...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Espace de Schwartz
BIBLIOGRAPHIE
-
(1) - DYM (H.), MC KEAN (H.P.) - Fourier Series and Integrals. - Academic Press 1972.
-
(2) - FOLLAND (G.) - Introduction to partial differential equations. - Princeton University Press 1976.
-
(3) - KAHANE (J.P.), LEMARIE (P.G.) - Séries de Fourier et ondelettes. - Cassini 1998.
-
(4) - KATZNELSON (Y.) - An Introduction to Harmonic Analysis. - Wiley and Sons 1968.
-
(5) - KENIG (C.), TOMAS (P.) - Maximal operators defined by Fourier multipliers. - Studia Math. 68 (1980), 79-83.
-
(6) - MEYER (Y.) - Ondelettes. - Hermann 1990.
-
(7) - RUDIN (W.) - Real and Complex...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive