Présentation
En anglaisAuteur(s)
-
Gérard DEBEAUMARCHÉ : Ancien élève de l’École normale supérieure de Cachan - Professeur de mathématiques spéciales au lycée Clemenceau de Reims
-
Danièle LINO : Ancienne élève de l’École normale supérieure de Sèvres - Professeur de mathématiques spéciales au lycée Clemenceau de Reims
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Le champ de l’algèbre linéaire s’est longtemps limité à la résolution des systèmes d’équations linéaires AX = B, c’est-à-dire :
C’est en 1750 que Cramer publie à Genève, dans « L’introduction à l’analyse des lignes courbes algébriques », ses célèbres formules donnant l’expression des inconnues x1, ..., xn dans un système de n équations à n inconnues. Celles-ci préludent à l’introduction des déterminants.
D’autres méthodes de résolution des systèmes sont élaborées au cours du XIXe siècle, notamment par Gauss, qui fut le directeur de l’Observatoire de Göttingen, en vue de la résolution de problèmes astronomiques.
Enfin, à partir de 1840, Cayley inaugure le calcul vectoriel dans tandis que Grassmann introduit la notion d’espaces vectoriels abstraits, débouchant sur les idées actuelles de l’algèbre linéaire.
Celles-ci permettent de traiter géométriquement, et indépendamment de toute référence aux bases, les problèmes matriciels qui apparaissent tant en mathématiques (analyse numérique, probabilités, ...) que dans leurs applications aux sciences de l’ingénieur.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Algèbre linéaire en dimension quelconque
1.1 Espaces vectoriels sur un corps commutatif
On rappelle qu’un corps est un ensemble muni de deux lois de composition interne, notées + et , et vérifiant un certain nombre de propriétés (voir l’article Langage des ensembles et des structures Langage des ensembles et des structures). Ainsi pour p premier sont des corps.
Dans la suite, on désignera par un corps et l’on notera , les éléments neutres de pour les lois + et .
Définition 1. On appelle espace vectoriel sur un corps commutatif tout triplet (E, +, .) tel que :
-
(E,...
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Algèbre linéaire en dimension quelconque
Cet article fait partie de l’offre
Mathématiques
(166 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive