Présentation
EnglishRÉSUMÉ
Le phénomène d'atomisation (ou pulvérisation) est présent dans de nombreux domaines industriels (automobile, traitement de surface, médecine, parfumerie, électronique, météorologie, etc.). Les processus et mécanismes physiques mis en jeu sont en général assez simples sur le principe, mais le passage d'une phase continue liquide à une phase dispersée se fait par la déformation puis la rupture de la surface, ce qui implique un certain degrés de complexité. Sont traitées dans cet article les principales voies théoriques explorées pour la représentation de l'atomisation.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Luis LE MOYNE : Docteur en mécanique, habilité à diriger des recherches - Ingénieur de l'École nationale supérieure d'arts et métiers (ENSAM) - Professeur des universités, institut supérieur de l'automobile et des transports, université de bourgogne, Nevers
INTRODUCTION
Les processus de formation de gouttes et particules sont omniprésents dans l'industrie et dans la nature : les chambres de combustion des voitures, des avions, des fusées, des chaudières, les traitements de surface (peintures, revêtements, nettoyage…), les traitements thermiques, les inhalateurs en médecine, la parfumerie, l'épandage agricole, les imprimantes et photocopieurs, la fabrication de composants électroniques, les extincteurs d'incendie, mais aussi dans le brouillard, la pluie, les nuages, les éruptions volcaniques, les geysers… De façon générale, l'étude de la formation de gouttes et particules est commune aux processus d'émulsion, de séparation de liquides, de vaporisation et condensation, qu'on veuille accélérer ces processus par la formation de gouttes ou au contraire les ralentir en évitant l'apparition de gouttes.
Les processus et mécanismes physiques mis en jeu sont en général assez simples sur le principe, mais le passage d'une phase continue liquide à une phase dispersée se fait par la déformation puis la rupture de la surface. Cette déformation apparaît subtilement, d'abord comme une perturbation superficielle imperceptible. Puis, grâce à l'amplification par le couplage de forces appliquées au liquide, la perturbation grandit et atteint une amplitude telle que les contraintes appliquées dépassent celles qui permettent la cohésion ; c'est la rupture. Des phénomènes non-linéaires sont donc responsables du passage à la phase dispersée et, par nature, leurs expressions présentent des difficultés aux mathématiciens et aux physiciens voulant prévoir ou reproduire leurs effets.
C'est un domaine où la théorie est encore relativement élémentaire dans le sens où seuls quelques cas d'école d'atomisation (instabilité de Rayleigh) bénéficient d'expressions permettant une quantification précise de la taille et de la vitesse des gouttes produites. Dans la plupart des cas, seules les tendances et les aspects qualitatifs peuvent être reproduits par la théorie. Nous verrons dans cette section quelles sont les principales voies théoriques explorées pour la représentation de l'atomisation de façon aussi exhaustive que possible. Néanmoins, compte tenu du grand nombre de travaux menés sur le sujet et de la complexité de certaines expressions algébriques, nous suggérons au lecteur voulant approfondir le sujet de se référer à la bibliographie.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique Chimie
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Cavitation
Longtemps suspectée d'être un mécanisme d'atomisation aux très grands nombres de Reynolds, le changement de phase liquide vapeur quasi isotherme ou cavitation à l'intérieur de l'orifice d'injection a relativement récemment été confirmé dans son rôle d'agent primordial dans l'obtention de très petites gouttes dans les processus d'injection à très haute pression (figure 12). Soteriou et al., He et Ruiz, Arcoumanis et d'autres auteurs ont mis en évidence l'apparition de poches de vapeur à l'intérieur des injecteurs et leur influence capitale sur les caractéristiques de l'atomisation. L'implosion des bulles de cavitation crée des perturbations qui accélèrent la rupture du liquide. Le régime de cavitation semble instationnaire même pour des conditions génératrices stables, conduisant à des oscillations périodiques et même à un basculement hydraulique lorsque les poches de vapeur s'étendent jusqu'à l'extérieur de l'orifice et peuvent provoquer la remontée du gaz extérieur à l'intérieur de l'orifice.
L'intensité de la cavitation (dans les conditions de pression, température, et vitesse pour lesquelles elle se manifeste) dépend du débit de liquide injecté. Lorsque celui-ci augmente on observe d'abord des bulles de vapeur isolées transportées par l'écoulement. Ensuite une poche instable de vapeur apparaît le plus souvent à proximité de points de rebroussement important. Au-delà, la poche de vapeur devient permanente, séparant le liquide des parois d'un seul coté de l'écoulement de façon asymétrique et s'étendant le long de l'orifice. L'atomisation est alors plus importante du coté de l'écoulement où apparaît la cavitation.
Les sites de nucléation gazeuse dans le cas de cavitation homogène semblent dus à des dépressions temporelles et locales, résultant de gradients thermiques dans l'écoulement. Leur implosion a lieu au contact des parois solides de l'orifice ou de particules en suspension dans le liquide.
À l'équilibre thermodynamique la cavitation devrait avoir lieu lorsque la pression dans l'écoulement devient inférieure à la pression de vapeur saturante. En pratique, on peut observer des poches de cavitation à des pressions bien supérieures. Le critère d'apparition de cavitation est donc relié aux contraintes totales dans le liquide et non pas seulement à la pression. Aussi, les contraintes visqueuses peuvent jouer un rôle important dans l'apparition...
Cet article fait partie de l’offre
Physique Chimie
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Cavitation
BIBLIOGRAPHIE
-
(1) - EGGERS (J.) - Theory of drop formation. - Physics of Fluids, 7, p. 941-953 (1994).
-
(2) - PHILLIPS, OSMAN (A.B.) - Computational and experimental analysis of dynamics of drop formation. - Phys. Fluids, DOI:10.1063/1.870224, 11(12), p. 3577 (1999).
-
(3) - BOECK (T.), ZALESKI (S.) - Numerical simulation of liquid – Gas interfaces with applications to atomization. - XXI International Congress of Theoretical and Applied Mechanics, Warsaw, Poland, 15-21 août 2004.
-
(4) - BREMOND (N.), VILLERMAUX (E.) - Atomization by jet impact. - J. Fluid Mech., vol. 549, p. 273-306 (2006).
-
(5) - HUIMIN (L.) - Science and engineering of droplets fundamentals and applications. - Noyes publications Park Ridge, New Jersey, USA, William Andrew publishing, LLC Norwich, New York, USA (1981).
-
(6) - LEFEBVRE (A.H.) - Atomization and sprays. - Taylor...
Cet article fait partie de l’offre
Physique Chimie
(202 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive