Présentation

Article interactif

1 - HISTORIQUE

2 - MÉTHODES DE SCHWARZ

3 - MÉTHODES DE SCHUR

Article de référence | Réf : AF1375 v1

Méthodes de Schur
Méthodes de décomposition de domaines - Notions de base

Auteur(s) : Martin J. GANDER, Laurence HALPERN

Relu et validé le 26 avr. 2021

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Actuellement dans l'industrie automobile, en médecine ou astrophysique, les problèmes complexes de calculs de structures et de reconnaissance de forme sont résolus sur des calculateurs parallèles composés de centaines de nœuds de calcul. Leurs fonctionnements nécessitent l’utilisation de méthodes de décomposition de domaines. Les premiers modèles de ces méthodes ont été établis par H.A. Schwarz. Le principe consiste à morceler un problème de grande taille en une suite de sous-problèmes de taille plus petite, et donc plus facilement résolus. Depuis leur apparition, les approches ont évolué et des variantes se sont greffées aux modèles de base, aboutissant à différentes qualités de convergence.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Domain decomposition methods - Basic notions

Within the automobile industry, the medical sector or in astrophysics the complex problems of structure calculations and shape recognition are currently solved on parallel calculators composed of hundreds of calculation nodes. The way in which they function requires the use of domain decomposition methods. The first models regarding such methods were defined by H.A. Schwarz. The main principle consists in the breaking down of a large scale problem into a series of smaller problems which thus become easier to solve. Since their creation, these approaches have evolved and variations have been added to the basic models thus leading to various convergence qualities.

Auteur(s)

  • Martin J. GANDER : Professeur de mathématiques - Section de Mathématiques, Université de Genève

  • Laurence HALPERN : Professeur de Mathématiques - Laboratoire Analyse, Géométrie et Applications, Université Paris 13

INTRODUCTION

Tous les problèmes d’ingénierie aujourd’hui sont résolus en parallèle sur des ordinateurs composés de centaines, voire des milliers de noeuds de calcul. Cet article se propose d’exposer les méthodes de décomposition de domaine susceptibles de s’appliquer à ces nouveaux outils. Emile Picard nous enseigne dans  que pour comprendre une théorie, il est bon d’avoir en tête un problème modèle.

Les méthodes d’approximation dont nous faisons usage sont théoriquement susceptibles de s’appliquer à toute équation, mais elles ne deviennent vraiment intéressantes pour l’étude des propriétés des fonctions définies par les équations différentielles que si l’on ne reste pas dans les généralités et si l’on envisage certaines classes d’équations.

Nous choisirons donc dans tout cet exposé un fil conducteur, l’équation de la chaleur

( 1 )

représentant les variations en temps et en espace de la température d’un corps emplissant le domaine Ω, soumis à une source de chaleur f (qui sera appelée second membre), avec une température initiale donnée dans tout le domaine, et des conditions aux limites sur le bord du domaine ∂Ω, par exemple de Dirichlet (la température est fixée), soit u = g. ∂tu est la dérivée en temps de u, Δ est l’opérateur de Laplace, Δu = ∂ 11 u + ∂ 22 u + ∂ 33 u. Pour calculer sur un ordinateur une solution approchée de cette équation, on peut commencer par une semi-discrétisation en temps. Le schéma le plus simple est le schéma d’Euler implicite (voir [AF 1 220]). Partageons l’intervalle de temps [0, T] en sous-intervalles [tn , tn+1] de longueur Δt. Notons un(x) l’approximation de u à l’instant tn au point x, calculée par la formule de récurrence

où f n+1 représente f  (x, tn+1). Pour passer du temps t n au temps t n+1 , il faut donc résoudre l’équation elliptique

dans le domaine Ω, où f est maintenant une fonction indépendante du temps.

La discrétisation en espace de cette équation par une méthode de type éléments finis ou volumes finis mène à un système linéaire (voir [AF 500] et [AF 503]). Lorsque la taille du domaine de calcul est très grande, ou la discrétisation très fine, la taille du système linéaire excède les capacités de stockage et de calcul d’un seul ordinateur, si puissant soit-il. L’idée la plus simple pour remédier à ce problème est de décomposer le système linéaire en sous-systèmes, dont chacun est suffisamment petit pour être résolu très rapidement sur un nœud d’un système d’ordinateurs (divide et impera). Cela peut se faire au niveau purement informatique, mais il est plus fructueux de revenir en amont et de développer une stratégie au niveau du problème mathématique. Cette démarche est souvent réclamée par la géométrie elle-même (assemblage de structures par exemple). Le domaine de calcul est alors partagé en sous-domaines, chacun assigné à un nœud de la grappe de calcul. Les échanges entres les sous-domaines sont effectués par des conditions de transmission et traduits par des échanges entre les processeurs. La résolution du problème de départ est alors réalisée en itérant entre les sous-domaines, et les sous-domaines peuvent même être en espace-temps.

Toutes ces méthodes sont des méthodes de décomposition de domaines. Elles ont pour fondateur H.A. Schwarz qui en écrivit une première version en 1870 . Elles ont donné lieu à une intense activité scientifique depuis l’avènement des calculateurs parallèles. Elles sont utilisées pour des calculs de pneumatiques, d’automobiles, de structures sismiques, de navette spatiale, de reconnaissance de forme, d’environnement, de météorologie, d’astrophysique, de médecine, et tant d’autres.

Leur champ d’utilisation est même plus large : si par exemple le modèle a des propriétés physiques différentes dans différentes parties du domaine, les méthodes de décomposition de domaines sont un outil naturel pour leur traitement. Mentionnons par exemple la jonction d’une poutre et d’une plaque, le couplage entre l’océan et l’atmosphè

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

Domain Decomposition   |   Schwarz Methods   |   Schur's Methods   |   Waveform Relaxation   |   Parareal Algorithm

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af1375


Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

3. Méthodes de Schur

Historiquement les méthodes de Schur ont souvent été appelées méthodes de sous-structuration. Néanmoins nous avons vu que les méthodes de Schwarz peuvent aussi s’écrire sous forme sous-structurée, c’est pourquoi nous préférons utiliser la terminologie de méthodes de Schur. Il en existe deux variantes principales, la méthode de Schur primal et la méthode de Schur dual. Nous verrons que les deux méthodes sont intimement liées, et chacune constitue un excellent préconditionneur pour l’autre.

3.1 Méthode de Schur primal

Suivons la démarche de Przemieniecki esquissée au paragraphe 1.2, avec les notations modernes. Reprenons le système linéaire (19) en dimension 1, Au  =  f , en écrivant d’abord les inconnues de Ω1 = ]0, α[, u 1 = (u 1.….u a−1)T, puis celles de Γ = {α}, u Γ = ua , puis celles de Ω2 = ]α, 1[,u 2 = (u a+1.….u J) T . Ces trois blocs constituent le vecteur

Le second membre f est décomposé de la même façon, et la matrice A est décomposée par blocs en

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Méthodes de Schur
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ARNOLD (V.) -   Équations différentielles ordinaires  -  Éditions MIR, Moscou (1974).

  • (2) - BJORHUS (M.) -   Semi-discrete subdomain iteration for hyperbolic systems  -  Tech. Rep. 4, NTNU (1995).

  • (3) - BOURGAT (J.-F.), GLOWINSKI (R.), LE TALLEC (P.), VIDRASCU (M.) -   Variational formulation and algorithm for trace operator in domain decomposition calculations  -  in Domain Decomposition Methods, T. Chan, R. Glowinski, J. Périaux, and O. Widlund, eds., Philadelphia, PA, SIAM, pp. 3-16 (1989).

  • (4) - CAI (X.-C.), SARKIS (M.) -   A restricted additive Schwarz preconditioner for general sparse linear systems  -  SIAM Journal on Scientific Computing, 21, pp. 239-247 (1999).

  • (5) - CHAN (T.F.), MATHEW (T.P.) -   Domain decomposition algorithms  -  in Acta Numerica 1994. Cambridge University Press, pp. 61-143 (1994).

  • (6) - CHARTIER (P.), PHILIPPE (B.) -   A...

1 Sites Internet

Premiers exposés de la conférence internationale sur les méthodes de décomposition de domaines

http://www.ddm.org/conferences.html

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(166 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS