Présentation

Article

1 - GÉNÉRALITÉS

  • 1.1 - Opérations unitaires avec transfert de matière
  • 1.2 - Application à la conception et à l’adaptation des unités industrielles
  • 1.3 - Notion de modèle

2 - RÉGIME DE FONCTIONNEMENT PAR RAPPORT AU TEMPS

3 - MODÈLES D’ÉCOULEMENTS

4 - DIFFÉRENTS TYPES D’OPÉRATIONS

5 - APPLICATION : ÉTABLISSEMENT DES BILANS MATIÈRE ET ENTHALPIQUE

6 - INFORMATIQUE APPLIQUÉE AUX BILANS MATIÈRE ET ENTHALPIQUE

  • 6.1 - Procédés en régime stationnaire
  • 6.2 - Procédés en régime instationnaire
  • 6.3 - Simulateurs simplissimes

Article de référence | Réf : J1070 v2

Modèles d’écoulements
Transfert de matière - Méthodologie

Auteur(s) : Jean-Paul MOULIN, Dominique PAREAU, Mohamed RAKIB, Moncef STAMBOULI

Date de publication : 10 mars 2000

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Jean-Paul MOULIN : Ingénieur de l’École Centrale Paris - Docteur ès sciences - Professeur de génie chimique à l’École Centrale Paris - Ingénieur à la Société générale pour les techniques nouvelles (SGN)

  • Dominique PAREAU : Ingénieur de l’École Centrale Paris - Docteur ès sciences - Professeur de génie chimique à l’École Centrale Paris

  • Mohamed RAKIB : Ingénieur de l’École Centrale Paris - Docteur ès sciences - Chef de travaux à l’École Centrale Paris

  • Moncef STAMBOULI : Ingénieur de l’École Centrale Paris - Docteur ès sciences - Chef de travaux à l’École Centrale Paris

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les industries de procédé, chimie, pharmacie, industries agroalimentaires, etc., ont suscité l’apparition d’une science appliquée, qui est connue sous le nom de génie des procédés. Le génie des procédés s’articule en deux parties : d’une part, l’étude des processus, chimiques, biochimiques, etc., particuliers à chaque procédé, et d’autre part le génie chimique qui traite des appareils où ces processus sont mis en œuvre, indépendamment du processus particulier.

L’objet du génie chimique est la détermination de l’agencement, du dimensionnement, des conditions opératoires et de la conduite des appareils des industries de procédé, dans le but d’atteindre des performances requises. Un très grand nombre de configurations permettent de réaliser ces performances. Le choix entre ces configurations est conduit par la recherche d’un optimum, dans le cadre de contraintes. Certaines contraintes sont réglementaires ou sociales : zéro pollution, zéro accident, d’autres sont commerciales : zéro défaut, délai minimal entre commande et livraison. L’optimum est économique : les coûts doivent être minimisés. Des incertitudes sont inévitables. Elles doivent être prises en compte : l’objectif industriel est souvent défini comme le « juste bien » : il faut assurer le résultat sans prendre de coefficients de sécurité excessifs.

À la conception d’une unité de production, il faut équilibrer au mieux les couples : taille des appareils, conditions opératoires (c’est-à-dire en première approximation les consommations d’énergie), qui permettent d’assurer que les performances requises seront atteintes. Cette dualité est transposable dans le domaine économique et les deux parties correspondent respectivement, en simplifiant à l’excès, aux investissements et aux frais de fonctionnement. Il est rare que l’optimisation économique porte sur une seule opération : la recherche de l’optimum sera le plus souvent effectuée pour un procédé entier. Elle porte donc sur un ensemble complexe d’opérations et sur leurs connexions. L’adaptation des conditions opératoires d’une unité de production à des conditions différentes de celles qui présidaient à sa conception, que ce soient les matières premières ou les produits finis, est soumise aux mêmes contraintes et à la recherche de l’optimum économique. Une nouveauté importante pour l’adaptation des unités de production est qu’elle se fait maintenant dans un cadre dynamique, en intégrant par exemple la transition d’une production à une autre à l’optimisation : c’est une part importante de l’activité connue sous le nom de gestion de production.

Le dimensionnement des unités de production a un coût, il fait partie des investissements et représente une part non négligeable de ceux-ci. Il doit donc lui-même atteindre son objectif au moindre coût : de même que l’on évite de réaliser des unités de productions ayant des moyens surdimensionnés, de même il faut éviter la précision excessive dans les calculs de génie chimique, car elle est inutilement coûteuse.

La présentation du transfert de matière et des appareils qui le mettent en œuvre vise donc l’objectif industriel suivant : il faut, en toutes circonstances, employer le modèle qui permet d’atteindre l’objectif recherché et qui est le moins coûteux en temps de travail (humain ou machine). C’est pourquoi il faut utiliser le modèle le plus simple possible : c’est une faute méthodologique que d’employer un modèle complexe (coûteux en temps de calcul) là où sa précision est inutile ou même illusoire. La présentation des modèles qui est faite dans cet article et dans les suivants privilégie donc les modèles simples, les plus utilisés, au détriment des modèles complexes. Le fait qu’il soit didactique de présenter en premier des concepts simples, et donc des modèles simples, n’est qu’un argument supplémentaire.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-j1070


Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(365 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Modèles d’écoulements

3.1 Modèles simples

HAUT DE PAGE

3.1.1 Écoulement « piston »

L’écoulement est unidirectionnel. Dans un plan perpendiculaire à l’écoulement, tous les filets fluides se déplacent avec une vitesse uniforme, toutes les grandeurs physiques sont identiques (concentrations, température, etc.), sauf éventuellement à la périphérie de la veine fluide dans une couche suffisamment mince pour que l’incidence de l’existence de cette couche sur l’expression des différents flux axiaux soit négligeable. Cet écoulement représente, du point de vue du génie chimique, le passage à la limite des propriétés d’un écoulement turbulent : la turbulence homogénéise les propriétés dans une tranche normale à l’écoulement et les différents filets fluides ont des vitesses moyennes très voisines, sauf dans la couche limite d’épaisseur très faible qui se trouve au voisinage immédiat de la paroi.

Si, dans un appareil de section droite σ circule un fluide de débit massique L, de masse volumique ρ, de débit volumique , de vitesse linéaire et dont la capacité thermique massique moyenne est Cp à la température thermodynamique T, s’il contient un constituant quelconque A tel que CA et xA sont respectivement sa concentration et sa fraction massique, toutes ces grandeurs étant des fonctions d’une coordonnée d’espace seulement et du temps, si de plus TR est la température de référence, on peut exprimer le flux calorifique et le flux massique Nm de A par unité de temps :

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(365 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Modèles d’écoulements
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SCHMIDT (A.X.) et LIST (H.L.) -   Material and energy balances  -  (Bilans matière et énergétique). 1962 Prentice Hall.

  • (2) - COULSON (W.M.) et RICHARDSON (J.F.) -   Chemical engineering  -  . Vol. 3, 2nd ed. 1987 (J.F. RICHARDSON & D.G. PEACOCK), Chemical reactor design, biochemical reaction engineering including computational techniques and control. (Génie chimique vol. 3, 2e éd. 1987. Calcul des réacteurs chimiques, génie des réactions biochimiques, y compris les techniques de calcul et le contrôle). 1987 Pergamon Press.

  • (3) - JOULIA (X.) et GOURLIA (J.P.) -   Modélisation : enjeux et perspectives pour la conception et l’analyse des procédés  -  . Entropie n 208 1997.

1 Sites Internet

Liens utiles en Génie des procédés

http://ensspicam.u-3mrs.fr/basededonnee.html

Société française de génie des procédés (FGP)

http://www.ensic.u-nancy.fr/SFGP/

Section Génie des procédés du CNRS

http://www.spi-cnrs-dir.fr/

HAUT DE PAGE

2 Logiciels

HAUT DE PAGE

2.1 Procédés en régime stationnaire

Aspen Plus (États-Unis) : commercialisé par Aspen Tech http://www.aspentech.com

Ce logiciel est équipé d’une riche base de données thermodynamiques et comprend divers modules additionnels, dont Batchfrac qui permet de traiter des opérations discontinues et Ratefrac qui traite de la cinétique du transfert de matière.

PRO/II (États-Unis), commercialisé par SIMSCI-Esscor

http://www.simsci.com

Hysim (États-Unis)

ProSim (IGC, Toulouse, France), commercialisé par Prosim S.A.

http://www.prosim.net

...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(365 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS