Présentation
EnglishRÉSUMÉ
Cet article présente les méthodes, développées dans les laboratoires de recherches, pour purifier les gaz rares extraits d'échantillons géologiques par chimisorption et physisorption dans une ligne de purification sous ultravide. Ces méthodes de purification permettent de piéger irréversiblement l'ensemble des espèces réactives (N2, O2, H2O, CO2, CxHy, etc.) afin de minimiser les interférences de masse pendant l'analyse des gaz rares. Les gaz sont aussi séparés, en utilisant plusieurs pièges refroidis à différentes températures pour les analyser séquentiellement avec un spectromètre de masse.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Laurent ZIMMERMANN : Ingénieur d'études CNRS Centre de Recherches Pétrographiques et Géochimiques, UMR 7358, Vandoeuvre-lès-Nancy, F-54501, France
-
Evelyn FÜRI : Chargée de recherche CNRS Centre de Recherches Pétrographiques et Géochimiques, UMR 7358, Vandoeuvre-lès-Nancy, F-54501, France
-
Pete BURNARD : Directeur de recherche CNRS Centre de Recherches Pétrographiques et Géochimiques, UMR 7358, Vandoeuvre-lès-Nancy, F-54501, France
INTRODUCTION
Notre planète, pendant son accrétion il y a 4,56 milliards d'années, a piégé les gaz rares de la nébuleuse solaire. Ceux-ci, de composition primitive (peu ou mal connue, 3He/4He > ≈ 10–4, 40Ar/36Ar ≈ 10–4) se sont ensuite différenciés à la fois au niveau élémentaire et isotopique suite à la formation de la croûte, au dégazage du manteau et à sa différenciation. Les gaz rares sont actuellement présents dans les trois grands réservoirs terrestres, à savoir l'atmosphère, la croûte et le manteau et leurs compositions ne cessent d'évoluer suite :
-
aux interactions entre ces réservoirs (zones de subduction, volcanisme, etc.) ;
-
aux pertes par échappement dans l'espace ;
-
à des réactions nucléaires.
Ces compositions ont une composante :
-
radiogénique, générée par des réactions de fission et de décroissance certains isotopes (4He, 40Ar, 129Xe, 136Xe) à partir de radionucléides (235-238U, 232Th, 40K, 129 I, 244Pu, etc.) ;
-
nucléogénique, produite suite à des réactions entre le noyau de certains éléments (6Li, 17-18O, 24-25Mg, 35-37Cl, etc.) et des neutrons ou des particules α (4He) des isotopes des gaz rares (3He, 20-21-22Ne, 36Ar, 38Ar, etc.) ;
-
cosmogénique, résultat de l'interaction entre des éléments cibles (O, Mg, Si, Al, Fe, Ca, Rb, Sr, Te, Ba, La, etc.) avec le rayonnement cosmique (réaction de spallation) et la capture de muons pour produire un grand nombre d'isotopes de gaz rares (3He, 20-21-22Ne, 36-38Ar, 78-83Kr, 124-132Xe).
Une dernière composante, d'origine humaine cette fois-ci, a modifié le rapport 3He/ 4He dans le cycle de l'eau suite à 3He produit à partir du tritium (3H) émis par les essais nucléaires dans l'atmosphère.
L'étude de la composition élémentaire et isotopique de ces réservoirs se fait à partir d'un échantillonnage de roches et/ou de fluides (liquide ou gazeux) collecté sur le terrain par le géologue dont le but est de comprendre l'histoire géologique d'une région ou plus globalement celle de la Terre ou du système solaire. Le scientifique, notamment le géochimiste spécialisé dans l'analyse des gaz rares, s'appuie pour traiter ces échantillons, sur une ou plusieurs techniques d'extraction [J 6 632] pour libérer les gaz dans une enceinte, sous ultravide, spécialement développée pour la purification des gaz rares [J 6 634]. Cet article décrit les principales techniques de purification des gaz rares pour permettre aux ingénieurs de mettre en place, en adéquation avec les conditions analytiques qui leur sont imposées, des protocoles de purification physico-chimiques.
La structure électronique des gaz rares en 1s2 pour He et ns2np6 pour Ne, Ar, Kr et Xe a la particularité d'être saturée d'électrons. Cette caractéristique induit une stabilité et une inertie chimique importante de ces éléments vis-à-vis du milieu dans lequel ils se trouvent et permet d'envisager une étape de purification par la chimisorption des espèces réactives (N2 , O2 , CxHy , CO2 , H2O , etc.), présentes dans le gaz initial, à la surface de pièges appelés communément « getters ». Les caractéristiques physiques des gaz rares autorisent ensuite, au cours d'une seconde étape de purification, leur séparation par physisorption sur des adsorbants refroidis à basse température. Leur désorption contrôlée permet de les séparer séquentiellement et de les analyser, dans des conditions optimales, à l'aide d'un spectromètre de masse.
MOTS-CLÉS
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Procédures de purification et de séparation des gaz rares
Les procédures décrites dans ce paragraphe doivent permettre, en s'appuyant sur les processus de chimisorption et de physisorption vus précédemment, de purifier et de séparer les gaz rares, après leur extraction d'un échantillon, afin de les analyser, indépendamment les uns des autres, par spectrométrie de masse. Les trois protocoles ci-dessous ne sont que des exemples parmi d'autres et peuvent être modifiés en fonction de la configuration de la ligne de purification des gaz, de la technique d'extraction utilisée, des quantités d'eau et d'hydrocarbures, de la nature des échantillons (roches, minéraux, gaz, liquide), etc. Il est préconisé, après le protocole de purification, de mesurer la pression du gaz que l'on souhaite analyser avant son introduction dans l'analyseur et de l'ajuster, par dilution, à celle du gaz standard de manière à obtenir des signaux comparables au niveau de l'analyseur.
4.1 Purification de He/Ne
– Étape 1 : extraction des gaz.
– Étape 2 : un charbon actif refroidi à – 196 oC (doigt froid types A ou B) est utilisé durant 5 à 10 min pour adsorber la majorité des gaz : N2 , O2 , H2O, CO2 , Ar, Kr, Xe et la plupart des CxHy . Cette étape permet également de préserver l'état de surface des getters employés ensuite.
– Étape 3 : un getter à 600 oC piège par chimisorption pendant 5 min CH4 ainsi que les espèces réactives résiduelles (N2 , O2 , H2O, CO2 et les CxHy). Cinq minutes supplémentaires sont nécessaires pour adsorber H2 à basse température (≈ 20 oC).
– Étape 4 : une tête cryogénique, refroidie à – 258 oC, piège la totalité de Ne pendant 15 min.
– Étape 5 : He est introduit dans le spectromètre de masse pour son analyse.
– Étape 6 : Ne est désorbé de la tête cryogénique à – 233 oC pendant 15 min. Il est introduit dans l'analyseur si son analyse est nécessaire.
HAUT DE PAGE...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Procédures de purification et de séparation des gaz rares
BIBLIOGRAPHIE
-
(1) - PINTI (D.L.) - Géochimie isotopique des gaz rares dans le pétrole du bassin parisien. - Thèse (1993).
-
(2) - BURNARD (P.G.), FARLEY (K.A.) - Calibration of pressure-dependent sensitivity and discrimination in Nier-type noble gas ion sources. - Geochemistry Geophysics Geosystems, 1, p. 1-7 (2000).
-
(3) - BURNARD (P.), ZIMMERMANN (L.), SANO (Y.) - The noble gases as geochemical tracers : history and background. - Spinger, 391 p. (2013).
-
(4) - SCHUFFENECKER (L.), SCACCHI (G.), PROUST (B.), FOUCAUT (J.F.), MARTEL (L.), BOUCHY (M.) - Thermodynamique et cinétique chimiques. - Techniques et documentation, Lavoisier, p. 436 (1991).
-
(5) - ICHIMURA (K.), MATSUYAMA (M.), WATANABE (K.) - Alloying effect on the activation processes of Zr-alloy getters. - Journal of Vacuum Science and Technology A, 5(2), p. 220-225 (1987).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
DINGUE (Development In Noble Gas Understanding and Expertise. Workshop ) organisé chaque année en marge de la conférence GOLDSCHIMDT
HAUT DE PAGE
Éléments de raccordement à bride CF : les éléments sont en acier inoxydable 316L [(DIN 17 440 – WN 14 404) Z2CND 17-12] et conformes à la norme « Pneurop » 6601/1981 et DIN 28 403
Cuivre OFHC (Oxygen Free High Conductivity) : cuivre élaboré suivant une méthode américaine. Son équivalent français est le cuivre Cu-c1 ou 2. Norme ISO 431
HAUT DE PAGECet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive