Présentation
En anglaisRÉSUMÉ
Cet article présente l’évolution de la technologie de liquéfaction de l’hydrogène qui, longtemps dédiée à un marché de niche avec des unités de petites capacités (quelques tonnes par jour), connait un renouveau dans le contexte de la transition énergétique en général et de la mobilité hydrogène en particulier. La liquéfaction de l’hydrogène est un procédé basé sur l’utilisation de cycles frigorifiques. Les propriétés particulières de l’hydrogène imposent des étapes spécifiques inhabituelles par comparaison aux procédés de liquéfaction d’autres gaz.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article describes the development of hydrogen liquefaction technology, which for a long time was a niche market with small capacity units (a few tons per day), but is now enjoying a revival in the context of the energy transition in general and hydrogen mobility in particular. Hydrogen liquefaction is a process based on the use of refrigeration cycles. The particular properties of hydrogen require specific stages that are unusual compared with the liquefaction processes for other gases.
Auteur(s)
-
Thibault PLAYS : Ingénieur ENS Cachan, - Docteur en énergétique et génie des procédés - Chargé de recherche et enseignement au CEEP (Centre thermodynamique des procédés), France
-
Philippe ARPENTINIER : Ingénieur ENSIC, IFP School - Docteur en génie des procédés, HdR - Direction scientifique, Air Liquide Innovation Campus Paris, France
INTRODUCTION
L’hydrogène liquide est resté très longtemps un marché de niche destiné aux programmes spatiaux, à des industriels ayant besoin d’un produit de pureté élevée ou d’un stockage de secours. Mais avec la croissance du marché de l’hydrogène en vue de la transition énergétique (de 95 Mt/an en 2023, elle est estimée à 621 Mt/an en 2050), la demande se diversifie et nécessite un investissement massif pour répondre au besoin.
En effet, la liquéfaction de l’hydrogène permet une logistique allégée et un stockage volumique plus conséquent. Suivant les cas d’applications, la chaîne logistique basée sur de l’hydrogène liquide peut être moins chère que la version gazeuse. De plus, pour la mobilité lourde (camion, bateau et avion), l’autonomie requise va nécessiter d’embarquer de l’hydrogène liquide.
Les prévisions de marchés prévoient également des pays importateurs et des pays exportateurs d’hydrogène, en fonction du coût de l’énergie et de l'accessibilité aux énergies renouvelables. Pour transporter cet hydrogène sur de longues distances, plusieurs scénarios sont possibles : le combiner à d’autres molécules pour produire des carburants de synthèse ou de l’ammoniac, ou le liquéfier. Cette filière étant émergente, il est difficile de se projeter pour connaître la distribution technologique à venir pour le transport de l’hydrogène sur de longues distances.
Ainsi, la technologie de liquéfaction, connue et exploitée depuis les années 1960, connaît un regain d’intérêt. En effet, pour satisfaire les besoins croissants de la mobilité hydrogène, un accroissement de la capacité (de quelques t/j à plus de 100 t/j) des unités de liquéfaction d’hydrogène est nécessaire, ce qui ouvre de nouvelles voies quant à la configuration du procédé et à son optimisation afin de réduire le coût unitaire de production.
Comme tout procédé de liquéfaction des gaz, celui dédié à l’hydrogène repose sur des cycles de compression/détente. La structure de ces cycles est très variée en fonction de la capacité de traitement, de la méthode de production de l’hydrogène en amont et de son utilisation en aval. Cependant, la nature même de l’hydrogène ajoute des problématiques nouvelles à la technologie de liquéfaction, problématiques non présentes dans les technologies de liquéfaction de gaz plus « classiques » (azote, CO2, méthane).
La première différence notable due à l’hydrogène est sa température de liquéfaction (20,4 K à pression atmosphérique). Cette température très basse impose de prendre des mesures pour garantir la performance de l’unité et sa sécurité. L’isolation à mettre en œuvre pour limiter les entrées thermiques est beaucoup plus conséquente et toute la partie du procédé en dessous de la température de liquéfaction de l’air doit se faire dans une boîte sous vide. Cette température de liquéfaction très basse conduit à mettre en place une étape de purification importante afin d’éviter la solidification d’impuretés présentes dans l’hydrogène.
La deuxième différence importante est liée à une propriété intrinsèque de l’hydrogène. En réalité, « l’hydrogène » est un mélange de deux isomères de spin : la forme ortho- et la forme para-hydrogène. La distribution entre ces deux isomères est fonction de la température, ainsi au cours du cycle de liquéfaction, elle va évoluer et cela va avoir un impact significatif sur la conception et la performance du procédé.
Compte tenu des propriétés spécifiques de l’hydrogène, d’une part, et de l’évolution du marché, d’autre part, la tendance actuelle consiste à concevoir des liquéfacteurs de grande capacité et à développer des cycles de réfrigération visant à minimiser les irréversibilités de façon à minimiser le coût de liquéfaction. C’est cette évolution que cet article se propose d’étudier.
Après un passage en revue des propriétés particulières de l’hydrogène, les différentes étapes du procédé de liquéfaction sont décrites : la purification, le prérefroidissement, la conversion catalytique de l’ortho-hydrogène en para-hydrogène et le cycle de liquéfaction. Un exemple de réalisation industrielle d’une capacité de 30 t/j est présenté dans la dernière partie, c’est un liquéfacteur conçu, construit et démarré par Air Liquide dans le Nevada aux États-Unis en 2022. Enfin, dans la conclusion sont analysées les pistes par lesquelles la réduction des coûts de liquéfaction de l’hydrogène peut être obtenue : augmentation de l'efficacité énergétique, effet d’échelle et/ou standardisation et modularisation des unités. Les axes de recherche et développement y sont également présentés.
MOTS-CLÉS
KEYWORDS
hydrogen | liquefaction | refrigeration cycle
VERSIONS
- Version archivée 1 de juin 2001 par Jean GALLARDA
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Énergies > Hydrogène > Stockage et transport de l'hydrogène > Liquéfaction de l’hydrogène > Propriétés de la molécule d’hydrogène
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Propriétés de la molécule d’hydrogène
1.1 Masse molaire
La masse molaire de l’hydrogène est faible (2,016 g/mol) ; elle est quatorze fois plus faible que celle de l’azote (28,013 g/mol).
Cette faible valeur de masse molaire a plusieurs conséquences sur les propriétés de l’hydrogène et le procédé de liquéfaction.
Dans des conditions thermodynamiques données (pression et température), l’énergie cinétique des molécules est quatorze fois plus petite pour l’hydrogène que pour l’azote. Cette caractéristique écarte la possibilité d’utiliser, pour l’hydrogène, des compresseurs centrifuges. En effet, le fonctionnement de ces compresseurs est basé sur la transformation d’énergie cinétique en énergie de compression. Pour un taux de compression donné de l’hydrogène, il faudrait alors, pour rester dans un domaine de vitesses de rotation acceptable (inférieures à 30 000 tr/min), un trop grand nombre de roues et cette solution ne serait pas économique. On utilise par conséquent des compresseurs volumétriques, essentiellement la technologie de compresseurs à pistons, malgré leur encombrement et leur coût de maintenance plus élevés.
Une autre conséquence de la « légèreté » de l’hydrogène est sa faible densité. Même à l’état liquide saturé, à la pression atmosphérique, l’hydrogène a une masse volumique de 70,8 kg/m3. Cette faible densité a un impact sur la pression hydrostatique. En effet, une hauteur de liquide de 1 m n’augmente la pression que de 7 mbar contre 100 mbar pour de l’eau liquide par exemple. Cette pression hydrostatique peut avoir un intérêt pour sous-refroidir le liquide ou intervenir dans le dimensionnement de thermosiphon.
HAUT DE PAGE1.2 Température d’ébullition et enthalpie de vaporisation
L’hydrogène a une température d’ébullition de 20,4 K sous 101 325 Pa ; seul l’hélium a une température d’ébullition plus faible. À cette température la plupart des autres gaz sont solides (tableau 1).
L’enthalpie de vaporisation (chaleur latente) de l’hydrogène est très faible (proche...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Propriétés de la molécule d’hydrogène
BIBLIOGRAPHIE
-
(1) - Mc CARTY (R.D.), HORD (J.), RODER (H.M.) - Selected Properties of Hydrogen. - NBS Monograph, 168 (1981).
-
(2) - Air Liquide, Division scientifique - Encyclopédie des gaz. - Amsterdam, Elsevier (1976).
-
(3) - HENDREICKS (R.C.), PELLER (I.C.), BARON (A.K.) - Joule-Thomson inversion curves and related coefficients for several simple fluids. - NASA Technical Note D-6807 (1972).
-
(4) - AL GHARFI (S.ZS.) et al - Hydrogen liquefaction : a review of the fundamental physics, engineering practice and future opportunities. - Royal Society of Chemistry, 15, p. 2690-2731 (2022).
-
(5) - BERSTAD (D.), SKAUGEN (G.), WILHELMSEN (O) - Dissecting the exergy balance of a hydrogen liquefier : Analysis of a scaled-up Claude hydrogen liquefier with mixed refrigerant pre-cooling. - International Journal of Hydrogen Energy, 46, 11, p. 8014-8029 (2020).
-
...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
Installation des systèmes mettant en œuvre l'hydrogène. - NF M58-003 -
ANNEXES
1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Absolut Hydrogen :
Air Liquide :
Engie :
Chart :
https://fr.chartindustries.com/
Linde :
Air Product :
HAUT DE PAGE1.2 Organismes – Fédérations – Associations (liste non exhaustive)
France Hydrogène :
https://www.france-hydrogene.org/
HAUT DE PAGE1.3 Documentation – Formation – Séminaires (liste non exhaustive)
Hydrogen Science and Engineering, Volume 2 : Materials, Processes, Systems and Technology. Eds. D. Stolten and B. Emonts, Wiley,...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(361 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive