Présentation
EnglishRÉSUMÉ
Cet article fait le point sur la mise en œuvre du chauffage par micro-ondes pour la synthèse organique. L’approche développée ici balaie plusieurs aspects : elle apporte les connaissances indispensables sur la thermique micro-onde, la technologie des systèmes micro-ondes et les capteurs associés, liste les avantages et les limites au travers d’exemples de réactions organiques et propose des préconisations. Le sujet est abordé avec une vision combinée chimie et génie des procédés.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Martine POUX : Ingénieur de Recherche - Laboratoire de Génie Chimique INPT/UPS/CNRS, École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques, Toulouse (ENSIACET), France
-
Lionel ESTEL : Professeur des Universités - Laboratoire de Sécurité des Procédés Chimiques, Institut National des Sciences Appliquées de Rouen (INSA Rouen), France
-
Christophe LEN : Professeur des Universités - Transformations Intégrées de la Matière Renouvelable, Université de Technologie de Compiègne (UTC), France
INTRODUCTION
Les micro-ondes – ondes électromagnétiques qui se situent dans la gamme des hyperfréquences – sont capables de générer le chauffage de milieux pour peu qu’ils soient sensibles à ces ondes, par exemple en possédant des caractéristiques diélectriques particulières. Contrairement aux techniques classiques de chauffage par conduction ou convection, l’utilisation des micro-ondes implique une interaction entre un rayonnement électromagnétique et la matière. Il ne s’agit donc pas d’un transfert thermique, le chauffage par micro-ondes d’un produit résulte ainsi de la conversion en chaleur de l’énergie d’une onde électromagnétique au sein de ce matériau.
L’application de ce type de chauffage à la synthèse chimique a été initiée il y a maintenant près de trente ans. Si beaucoup d’expériences positives ont été menées, trop peu dépassent encore le stade du laboratoire. La mise en œuvre d’un procédé de synthèse sous micro-ondes reste complexe et nécessite une attention particulière. L’approche intégrative de l’ingénieur alliant la com-préhension des mécanismes électromagnétiques mis en jeu et de leurs interactions avec le milieu, le développement de technologies spécifiques et l’analyse critique des réactions sont autant d’éléments indispensables pour la réussite de toute réaction organique sous micro-ondes et par la suite de son industrialisation. Cet article rapporte les connaissances de base indispensables, fait le point sur les technologies disponibles, met l’accent sur les points critiques et enfin propose une démarche utile pour appréhender la synthèse organique sous micro-ondes. Il s’accompagne d’exemples de synthèses organiques et montre les potentialités offertes par l’utilisation de cette technique de chauffage en particulier dans le contexte du développement durable.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Équipements de laboratoire et systèmes industriels
2.1 Les différents éléments de base
Tout système de chauffage par micro-ondes est constitué de :
-
une source d’ondes électromagnétiques. La plupart du temps, il s’agit d’un magnétron pouvant délivrer des puissances de l’ordre de quelques kilowatts ;
-
un guide d’ondes, tube métallique parallélépipédique dans lequel se propagent les ondes. Selon les dimensions du guide, le mode fondamental de propagation – qui correspond à une polarisation verticale du champ électrique (mode T10) – peut être obtenu. Il conduit à une répartition monomodale ce qui permet de contrôler la configuration spatiale des composantes électrique et magnétique ainsi que la répartition d’énergie dans le guide d’ondes ;
-
la cavité ou applicateur dans laquelle est introduit le produit à chauffer. Elle peut être de type multimode ou bien monomode.
-
Cavité multimode
Lorsque les dimensions de la cavité sont très supérieures à celles du guide d’onde, les ondes passent alors d’une propagation guidée à une propagation libre dans la cavité. Elles se dirigent alors dans toutes les directions de l’espace et se réfléchissent sur les parois. Ces réflexions multiples conduisent à la superposition d’ondes incidentes et réfléchies et à la formation d’ondes stationnaires. Il en résulte une configuration spatiale du champ électromagnétique complexe et surtout non homogène car il y a coexistence de différents modes de propagation, – d’où le terme de cavité multimode – et en conséquence une non homogénéité thermique. La position du produit à chauffer dans la cavité et son volume deviennent alors des paramètres critiques puisqu’ils vont conditionner l’uniformité en température du produit.
-
Cavité monomode
De volume réduit, elle permet le maintien d’un mode de propagation connu. La superposition des ondes incidentes et réfléchies crée alors des ondes dites stationnaires où les positions des maxima du champ électrique et magnétiques sont distinctes et parfaitement identifiées. Il est donc aisé de positionner le produit à chauffer dans la zone la plus favorable, ce qui garantit un transfert d’énergie maximum et une bonne homogénéité...
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Équipements de laboratoire et systèmes industriels
BIBLIOGRAPHIE
-
(1) - JONSCHER (A.K.) - Dielectric relaxation in solids, - Chelsea Dielectrics Press, London, (1983).
-
(2) - POUX (M.) – Chapitre 7 : Microwaves : a potential technology for green process development, p166-206 dans - Green process engineering : from concepts to industrial applications, - édition CRC Press, Boca – Raton (2015).
-
(3) - BONNET (C.) - Dualité du couplage onde-matière de l’intensification par chauffage micro-onde à la sécurité des procédés, - thèse de Doctorat UTC – Compiègne (2003)
-
(4) - LEGRAS (B.) - Adsorptions et désorptions compétitives sous irradiation micro-ondes : étude de la conversion d’énergie électromagnétique couplée aux transferts de matière et de chaleur - – INSA – Rouen (2011)
-
(5) - MAZUBERT (A.), TAYLOR (C.), AUBIN (J.), POUX (M.) - Key role of temperature in interpretation of MW heating on transesterification and esterification reactions for biodiesel production. - Bioressources...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
http://www.ansys.com/Products/Electronics/RF-and-Microwave
HAUT DE PAGEConstructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
http://www.anton-paar.com/fr-fr
HAUT DE PAGECet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive