Présentation
EnglishRÉSUMÉ
Cet article fait le point sur la mise en œuvre du chauffage par micro-ondes pour la synthèse organique. L’approche développée ici balaie plusieurs aspects : elle apporte les connaissances indispensables sur la thermique micro-onde, la technologie des systèmes micro-ondes et les capteurs associés, liste les avantages et les limites au travers d’exemples de réactions organiques et propose des préconisations. Le sujet est abordé avec une vision combinée chimie et génie des procédés.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Martine POUX : Ingénieur de Recherche - Laboratoire de Génie Chimique INPT/UPS/CNRS, École Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques, Toulouse (ENSIACET), France
-
Lionel ESTEL : Professeur des Universités - Laboratoire de Sécurité des Procédés Chimiques, Institut National des Sciences Appliquées de Rouen (INSA Rouen), France
-
Christophe LEN : Professeur des Universités - Transformations Intégrées de la Matière Renouvelable, Université de Technologie de Compiègne (UTC), France
INTRODUCTION
Les micro-ondes – ondes électromagnétiques qui se situent dans la gamme des hyperfréquences – sont capables de générer le chauffage de milieux pour peu qu’ils soient sensibles à ces ondes, par exemple en possédant des caractéristiques diélectriques particulières. Contrairement aux techniques classiques de chauffage par conduction ou convection, l’utilisation des micro-ondes implique une interaction entre un rayonnement électromagnétique et la matière. Il ne s’agit donc pas d’un transfert thermique, le chauffage par micro-ondes d’un produit résulte ainsi de la conversion en chaleur de l’énergie d’une onde électromagnétique au sein de ce matériau.
L’application de ce type de chauffage à la synthèse chimique a été initiée il y a maintenant près de trente ans. Si beaucoup d’expériences positives ont été menées, trop peu dépassent encore le stade du laboratoire. La mise en œuvre d’un procédé de synthèse sous micro-ondes reste complexe et nécessite une attention particulière. L’approche intégrative de l’ingénieur alliant la com-préhension des mécanismes électromagnétiques mis en jeu et de leurs interactions avec le milieu, le développement de technologies spécifiques et l’analyse critique des réactions sont autant d’éléments indispensables pour la réussite de toute réaction organique sous micro-ondes et par la suite de son industrialisation. Cet article rapporte les connaissances de base indispensables, fait le point sur les technologies disponibles, met l’accent sur les points critiques et enfin propose une démarche utile pour appréhender la synthèse organique sous micro-ondes. Il s’accompagne d’exemples de synthèses organiques et montre les potentialités offertes par l’utilisation de cette technique de chauffage en particulier dans le contexte du développement durable.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Application à la synthèse organique
3.1 Effet des micro-ondes en synthèse organique
3.1.1 Activation possible de la réaction
En chimie de synthèse organique et en catalyse, le chauffage sous micro-ondes se traduit souvent par une augmentation des rendements et de la sélectivité avec des temps de réaction plus courts. Plusieurs raisons sont évoquées pour expliquer ces effets spécifiques mais à ce jour, elles restent sous forme d’hypothèse et sont plus ou moins controversées :
-
l’existence de points chauds microscopiques. Ils se développeraient lors du choc entre molécules, le nombre de chocs étant exacerbé sous micro-ondes car les molécules polaires cherchent à s’orienter en permanence selon le sens du champ électrique ;
-
l’augmentation de l’agitation des molécules, due à l’oscillation du champ électrique ;
-
la modification de l’état de transition et la diminution de l’énergie d’activation dans la théorie d’Arrhenius.
Aujourd’hui, il est plutôt admis que les effets micro-ondes sur les réactions ne seraient uniquement liés qu’au caractère thermique. En effet, la montée rapide en température du milieu est favorable à la diminution des sous-produits (figure 4); dans les systèmes solide-liquide, les points chauds créés à la surface de catalyseurs solides induisent localement une température non mesurable et seraient à l’origine de rendements accrus.
HAUT DE PAGE
La température d’ébullition d’un solvant en système ouvert sous micro-ondes est parfois supérieure à celle observée par chauffage conventionnel. Ce phénomène, appelé surchauffe (superheating ou overheating) est obtenu car le solvant, ou milieu réactionnel, est chauffé très rapidement ce qui empêche la nucléation en paroi, paroi qui est alors à une température inférieure.
Des différences de températures...
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Application à la synthèse organique
BIBLIOGRAPHIE
-
(1) - JONSCHER (A.K.) - Dielectric relaxation in solids, - Chelsea Dielectrics Press, London, (1983).
-
(2) - POUX (M.) – Chapitre 7 : Microwaves : a potential technology for green process development, p166-206 dans - Green process engineering : from concepts to industrial applications, - édition CRC Press, Boca – Raton (2015).
-
(3) - BONNET (C.) - Dualité du couplage onde-matière de l’intensification par chauffage micro-onde à la sécurité des procédés, - thèse de Doctorat UTC – Compiègne (2003)
-
(4) - LEGRAS (B.) - Adsorptions et désorptions compétitives sous irradiation micro-ondes : étude de la conversion d’énergie électromagnétique couplée aux transferts de matière et de chaleur - – INSA – Rouen (2011)
-
(5) - MAZUBERT (A.), TAYLOR (C.), AUBIN (J.), POUX (M.) - Key role of temperature in interpretation of MW heating on transesterification and esterification reactions for biodiesel production. - Bioressources...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
http://www.ansys.com/Products/Electronics/RF-and-Microwave
HAUT DE PAGEConstructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
http://www.anton-paar.com/fr-fr
HAUT DE PAGECet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive