Présentation
EnglishRÉSUMÉ
Les enzymes savent compenser leur manque de généricité par leur extraordinaire sélectivité, voire énantiosélectivité et régiosélectivité. Ces propriétés en font des outils de choix pour réaliser des réactions de synthèse, dans des conditions particulièrement compatibles avec la préservation de l'environnement (milieux aqueux, pH non extrêmes, températures peu élevées). L'utilisation de plus en plus grande de matières premières renouvelables, donc d'origine biologique, pour favoriser des conditions de développement durable ne pourra qu'accroître les exemples de mise en oeuvre de biocatalyseurs. De plus, les outils de la biologie moléculaire, combinés à ceux de la biologie structurale et de la modélisation in silico, permettent aujourd'hui non seulement de diversifier les sources de nouvelles enzymes et d'en améliorer extraordinairement l'efficacité et la stabilité, mais également de concevoir des biocatalyseurs totalement originaux, capables de réaliser de nouvelles réactions.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Didier COMBES : Professeur à l'Institut national des sciences appliquées de Toulouse
-
Pierre MONSAN : Professeur à l'Institut national des sciences appliquées de Toulouse - École nationale supérieure des mines de Paris - Institut universitaire de France
INTRODUCTION
Les enzymes savent compenser leur manque de généricité par leur extraordinaire sélectivité, voire énantiosélectivité et régiosélectivité, qui en font des outils de choix pour réaliser des réactions de synthèse dans des conditions particulièrement compatibles avec la préservation de l'environnement (milieux aqueux, pH non extrêmes, températures peu élevées). L'utilisation de plus en plus grande de matières premières renouvelables, donc d'origine biologique, pour favoriser des conditions de développement durable ne pourra qu'accroître les exemples de mise en œuvre de biocatalyseurs. De plus, les outils de la biologie moléculaire, combinés à ceux de la biologie structurale et de la modélisation « in silico », permettent aujourd'hui non seulement de diversifier les sources de nouvelles enzymes et d'en améliorer extraordinairement l'efficacité et la stabilité, mais également de concevoir des biocatalyseurs totalement originaux, capables de réaliser de nouvelles réactions.
Il est très difficile de donner une date exacte de la découverte des enzymes. Une activité hors d'une cellule vivante a été observée en 1783 lorsque Spallanzani nota que la viande était « liquéfiée » par le suc gastrique des faucons.
D'autres observations similaires ont été faites par la suite, mais la première découverte d'une enzyme est en général créditée à Payen et Persoz qui, en 1833 ont traité un extrait aqueux de malt avec de l'éthanol et ainsi précipité une substance labile à la chaleur, qui initie l'hydrolyse de l'amidon. Ils ont appelé cette fraction « diastase ». Aujourd'hui, on sait que la diastase était une préparation impure d'amylase.
Le mot enzyme, « dans la levure » en grec, apparaît en 1878 : Kühne le propose pour faire la distinction entre les « ferments organisés » (le micro-organisme entier) ou « inorganisés » (excrétés par les micro-organismes).
C'est en 1897 que Bertrand observa que quelques enzymes nécessitaient des facteurs dialysables pour avoir de l'activité catalytique : ces substances ont été appelées coenzymes.
À partir du début du 20e siècle, de nombreux essais sont faits pour purifier les enzymes et décrire leur activité catalytique en termes mathématiques précis.
En 1902, Henri a suggéré qu'un complexe enzyme-substrat était un intermédiaire obligatoire dans la réaction catalytique. Il donne également une équation mathématique qui prend en compte l'effet de la concentration du substrat sur la vitesse de réaction.
L'effet du pH sur l'activité enzymatique a été mis en évidence par Sorensen en 1909 et c'est en 1913 que Michaelis et Menten redécouvrent l'équation d'Henri. Cette équation est basée sur des principes simples d'équilibre chimique.
Le fait que les enzymes sont des protéines n'a été accepté que vers la fin des années 1920.
Enfin, c'est en 1965 que Monod, Wyman et Changeux présentent un modèle cinétique pour les enzymes allostériques (enzymes de régulation qui donnent des courbes de vitesses sigmoïdes et non hyperboliques).
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Bioprocédés et bioproductions > Concepts, équipements et biosécurité > Biocatalyse ou catalyse enzymatique > Cinétique homogène
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Opérations unitaires. Génie de la réaction chimique > Catalyse et procédés catalytiques > Biocatalyse ou catalyse enzymatique > Cinétique homogène
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Cinétique homogène
2.1 Équation de Michaelis-Menten
L'équation de Henri qui est à l'origine de l'équation de vitesse de Michaelis-Menten repose sur l'observation suivante : la vitesse initiale d'une réaction est directement proportionnelle à la concentration de la préparation enzymatique, mais augmente de manière non linéaire avec la concentration du substrat, jusqu'à une vitesse maximale limite. L'établissement de l'équation de Henri est fondé sur les hypothèses suivantes :
-
l'enzyme est un catalyseur ;
-
l'enzyme et le substrat réagissent rapidement pour former un complexe enzyme-substrat ;
-
un seul substrat et un seul complexe enzyme-substrat sont impliqués et le complexe enzyme-substrat se brise pour donner directement l'enzyme libre et le produit ;
-
l'enzyme, le substrat et le complexe enzyme-substrat sont en équilibre. De plus, la vitesse de dissociation de ES en E + S est beaucoup plus rapide que la vitesse de coupure de ES pour former E + P ;
-
la concentration du substrat est beaucoup plus élevée que celle de l'enzyme ; ainsi, la formation du complexe ES n'altère pas la valeur de la concentration de S ;
-
la vitesse globale de la réaction est limitée par la coupure du complexe ES pour former l'enzyme libre et le produit ;
-
la vitesse est mesurée dans les premiers instants de la réaction de telle manière que la réaction inverse ne soit pas significative.
La réaction totale peut s'écrire :
Il est alors possible d'établir l'équation de Michaelis et Menten :
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Cinétique homogène
BIBLIOGRAPHIE
-
(1) - PRICE (N.C.), STEVENS (L.) - Fundamentals of enzymology. - Oxford University Press, Oxford (1989).
-
(2) - SMITH (G.M.) - The nature of enzymes, in Biotechnology, a Comprehensive Treatise. - 2e édn., sous la direction de REHM (H.-J.) et REED (G.), vol. 9, Springer-Verlag, Weinheim, Allemagne (1995).
-
(3) - HENRISSAT (B.) - A classification of glycosyl hydrolases based on amino-acid sequence similarities. - Biochem. J., 280, p. 309-316 (1991).
-
(4) - COUTINHO (P.M.), HENRISSAT (B.) - Carbohydrate-active enzymes : an integrated database approach. - In Recent Advances in Carbohydrate Bioengineering, GILBERT (H.J.), DAVIES (G.), HENRISSAT (B.) et SVENSSON (B.) eds., The Royal Society of Chemistry, p. 3-12, Cambridge (1999).
-
(5) - TERWISSCHA VAN SCHELTINGA (A.), ARMAND (S.), KALK (K.H.), ISOGAI (A.), HENRISSAT (B.), DIJKSTRA (B.W.) - Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and x-ray structure of a complex with allosamidin. Evidence for substrate assisted catalysis. - Biochemistry, 34, p. 15619-15623 (1995).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Nomenclature des enzymes http://www.chem.qmul.ac.uk/iubmb/
Classification CAZy (Carbohydrate Active enZymes) http://www.cazy.org/
Système d'information sur les enzymes http://www.brenda-enzymes.org/index.php4
HAUT DE PAGE
Les enzymes alimentaires http://europa.eu/scadplus/leg/fr/lvb/l21036.htm
HAUT DE PAGE3 Constructeurs – Fournisseurs – Distributeurs
Association des producteurs et formulateurs d'enzymes : AMFEP http://www.amfep.org/
HAUT DE PAGE
NOVOZYMES A/S http://www.novozymes.com/
DANISCO-GENENCOR http://www.genencor.com/
BASF ...
Cet article fait partie de l’offre
Chimie verte
(163 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive