Présentation
EnglishAuteur(s)
-
Antoine DIGUET : Doctorant au département de chimie de l'École normale supérieure de Paris, UMR 8640
-
Arnaud SAINT-JALMES : Docteur - Chargé de recherche au CNRS Institut de physique de Rennes, université Rennes 1 – CNRS – UMR 6251
-
Damien BAIGL : Professeur à l'université Pierre et Marie Curie Paris 06, Département de chimie de l'École normale supérieure de Paris, UMR 8640
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La conversion de l'énergie lumineuse en énergie mécanique est une question importante aussi bien pour le développement de véhicules propres que pour agir sélectivement sur des systèmes micro- et macroscopique sans contact mécanique. Les technologies actuelles comportent toujours des intermédiaires de stockage, de transport ou de transformation. S'en passer est un enjeu en termes de taille, de simplicité et de coût du système. La principale stratégie existante pour une conversion minimisant le nombre d'étapes intermédiaires consiste à modifier les tensions de surface entre l'objet et son environnement. Il se trouve qu'à la surface d'un liquide, la création de gradient de tension de surface induit des flux de matière (effet Marangoni) capables de mettre en mouvement des systèmes liquides ou solides. Ces flux peuvent en particulier être créés et contrôlés grâce à la lumière, soit via des effets thermiques, soit à l'aide de surfaces et de tensioactifs photosensibles (effet chromocapillaire).
The conversion of light energy into mechanical energy is an important challenge for the development of clean vehicles as well as for the non contacting selective actuation on macro and microscopic systems. Current technologies involve intermediates for storage, transport and transformation. Performing this conversion without intermediate is interesting in terms of size, simplicity and system cost. The main existing strategy for a most direct conversion consists in the modification of surface tension between the object and its environment. It turns out that the creation of a surface tension gradient at the liquid surface induces matter flows (Marangoni effect) able to move liquid or solid systems. In particular, these flows can be generated and controlled by light, through thermal effects or by using photosensitive surfaces and surfactants (chromocapillary effect).
Lumière, mouvement, tension de surface, effet Marangoni, isomérisation, goutte (~ 6)
Light, motion, surface tension, isomerization, Marangoni effect, drop
Domaine : Sciences fondamentales, énergie, chimie de surface
Degré de diffusion de la technologie : Émergence | Croissance | Maturité
Technologies impliquées : Surfaces photosensibles, tensioactifs
Domaines d'application : Conversion de l'énergie lumineuse, déplacement d'objets sans contact
Principaux acteurs français : Limité au domaine académique
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Sciences fondamentales > Physique Chimie > Recherche et innovation en physique-chimie > Conversion d'énergie lumineuse en travail mécanique par chromocapillarité > Mouvements induits par effets capillaires
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Mouvements induits par effets capillaires
3.1 Gradients de tension et effet Marangoni
Nous avons jusqu'ici raisonné de façon statique, en considérant que les différentes tensions sont uniformes le long d'une même interface (et donc que q est le même le long de la ligne triple). Or, il est tout à fait possible de les modifier en une partie du système. Les phénomènes dynamiques qui ont lieu lors du retour à un état d'équilibre vont pouvoir donner lieu à des mises en mouvement.
Un exemple simple est celui du soap boat , dans lequel un objet de taille centimétrique flottant sur de l'eau est déplacé en y déposant quelques gouttes de savon sur un de ses côtés. Les tensioactifs n'étant pas répartis de façon homogène à la surface du bain, le flotteur est alors soumis à une différence de tension de surface. Les tensioactifs diffusent vers les zones où leur concentration interfaciale est moindre pour stabiliser le système. Le flotteur est ainsi entraîné vers les tensions de surface les plus grandes. Sa vitesse peut atteindre plusieurs dizaines de centimètres par seconde. Cette expérience peut être optimisée en plaçant à une extrémité du flotteur un morceau de camphre, qui va à la fois diminuer localement la tension de surface et rapidement se sublimer, ce qui pollue faiblement la surface. Le bateau peut ainsi repasser plusieurs fois par le même endroit et être propulsé pendant plusieurs heures.
Ce phénomène est aussi utilisé par certains insectes marchant sur l'eau, qui éjectent une sécrétion contenant des tensioactifs pour avancer.
En réponse à un gradient de tension interfaciale, la mise en place d'un écoulement dans le plan de l'interface n'est pas le seul effet. Le problème est plus complexe en raison du couplage entre écoulement en surface et en volume : c'est l'effet Marangoni. Le volume du fluide peut se mettre en mouvement en raison d'un gradient de tension sur sa surface libre. C'est un effet important qui doit d'ailleurs être pris en compte pour comprendre en détail comment s'étale des tensioactifs sur une surface (en la déformant verticalement), ou comment avance le soap boat.
Une des manifestations macroscopiques directes de l'effet Marangoni est visible dans le phénomène des « larmes de vin », lorsqu'un film liquide de vin (le phénomène est encore plus visible avec un alcool plus fort) est étalé sur la paroi du...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Mouvements induits par effets capillaires
BIBLIOGRAPHIE
-
(1) - DE GENNES (P.-G.), BROCHARD-WYART (F.), QUERE (D.) - Gouttes, bulles, perles et ondes. - Collection Echelles, ISBN 2-7011-3024-7, Belin, 255 p. (2005).
-
(2) - CANTAT (I.), COHEN-ADDAD (S.), ELIAS (F.), GRANER (F.), HOHLER (R.), PITOIS (O.), ROUYER (F.), SAINT-JALMES (A.) - Les mousses : structure et dynamique. - Collection Echelles, ISBN 978-2-7011-4284-5, Belin, 288 p. (2010).
-
(3) - YOUNG (N.O.), GOLDSTEIN (J.S.), BLOCK (M.J.) - The motion of bubbles in a vertical temperature gradient. - J. Fluid. Mech., 6, no 3, p. 350-356 (1959).
-
(4) - BRZOSKA (J.-B.), BROCHARD-WYART (F.), RONDELEZ (F.) - Motions of droplets on hydrophobic model surfaces induced by thermal gradients. - Langmuir, 9, no 8, p. 2220-2224 (1993).
-
(5) - RYBALKO (S.), MAGOME (N.), YOSHIKAWA (K.) - Forward and backward laser-guided motion of an oil droplet. - Phys. Rev. E, 70, no 4, p. 046301 1-4 (2004)
-
...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive