Présentation

Article

1 - CONTEXTE

2 - DISCUSSION EXEMPLIFIÉE

3 - AVANTAGES, CONCLUSIONS ET PERSPECTIVES

4 - GLOSSAIRE

5 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : J8300 v1

Discussion exemplifiée
Catalyseurs supportés modernes et efficaces obtenus par chimie intégrative

Auteur(s) : Rénal BACKOV

Date de publication : 10 juin 2024

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La chimie intégrative, par intégration de la chimie sol-gel et des fluides complexes, permet de concevoir des oxydes céramiques monolithiques à porosité ouverte. Ces catalyseurs labellisés MUB, acronyme pour « Matériaux de l’Université de Bordeaux », possèdent une porosité hiérarchique ouverte où transport de masse et transport de photons sont optimisés au regard de systèmes micro-mésoporeux classiques. Dans cet article, leurs efficacités sont illustrées envers une catalyse à vocation environnementale, en phases liquide ou gazeuse. Enfin, les avantages de ces nouveaux catalyseurs sont énoncés, sans oublier leurs perspectives d’amélioration en termes de briques technologiques à appréhender.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Rénal BACKOV : Centre de recherche Paul Pascal, UMR-CNRS 5031, Pessac, France

INTRODUCTION

Cet article n’a pas vocation à reformuler les fondements d’une catalyse de contact dite « hétérogène », ni d’en revisiter les équations cinétiques associées et autres formalismes de mouillabilité, d’adsorption et de désorption aux interfaces. Ces arguments cinétiques sont d’ores et déjà traités de manière idoine et exhaustive par ailleurs et de nombreux ouvrages y sont dédiés dans les Techniques de l’Ingénieur [J 1 180] [J 1 182] [J 1 250] [J 1 255] [J 1 265]. Notre propos sera ici assez descriptif, mais nous l’espérons pertinent, et prendra dans un premier temps l’exemple de l’exosquelette silicique de diatomées comme métaphore de « catalyseurs modernes et efficaces ». Après cette introduction, par extrapolation d’une démarche bio-inspirée  [N 4 820] qui peut parfois nous induire en erreur dans nos schémas de pensées de structuration-texturation de la matière divisée, nous montrerons qu’une approche « systémique »  par chimie intégrative [RE 105] [RE 173] au-delà de se poser les bonnes questions (ou comme nous le verrons « la bonne question »), permet de concevoir des catalyseurs monolithiques modernes à porosité multiéchelle ouvrant la perspective d’une catalyse de contact avancée, que ce soit en phase gazeuse ou en phase liquide. Ainsi, nous décrirons quelques exemples non exhaustifs d’applications en catalyse de contact à vocation environnementale, comme les photoconversions « en volume » du CO2 ou de COV (composés organiques volatils) anthropiques, les oxydations thermoactivées du CO en CO2 sans métaux nobles, ou bien encore les réactions d’acylation et d’alkylation de Friedel-Crafts sans utilisation de superacides moléculaires et sans co-solvant. Enfin, après avoir signifié les axes d’amélioration en termes de procédés, nous énoncerons les avantages intrinsèques de ces catalyseurs modernes par rapport aux catalyseurs plus traditionnels.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-j8300


Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(365 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Discussion exemplifiée

Le premier propos de cette discussion sera donc thermodynamique pour illustrer la problématique préalablement mentionnée et rentrer dans le vif du sujet. Comme le montre la figure 2 nous pouvons schématiser un grain méso-microporeux possédant de facto un certain volume micro-mésoporeux. Règne au sein de ce volume poreux une pression, la pression de Laplace. Si nous plaçons ce grain poreux dans un liquide environnant, dans un premier temps le liquide va rentrer en périphérie du grain par capillarité et/ou pression osmotique, mais très vite nous allons atteindre un équilibre thermodynamique (ici l’équilibre mécanique) où pressions osmotique/capillaire s’équilibrent avec la pression de Laplace qui, justement, prend alors toute la place (figure 2) ! Avec la figure 2, et cette pression de Laplace omniprésente en cœur de grains micro-mésoporeux nous constatons que la répartition du soluté (ou du réactif) ne peut être qu’hétérogène, ultraconcentrée en périphérie mais faible, voire nulle, en cœur de grain. Pour rompre cet équilibre thermodynamique, il faudra appliquer un vide poussé, on parle alors « d’activation ». Si on n’active pas, rien ne se passe en cœur, car nous sommes alors à l’équilibre thermodynamique et tout s’exprime en peau externe. Certains estiment que cet équilibre mécanique peut être compensé par les potentiels chimiques réactionnels aux interfaces solide-liquide. Ce schéma de pensée est caduc, car pour mettre en avant un quelconque potentiel chimique il faut que le liquide mouille et s’étale sur la surface considérée, or la figure 2 signifie que si l’équilibre mécanique n’est pas rompu, presque rien ne peut se passer en cœur des grains catalytiques micro-mésoporeux, tout est surfacique et opère en peau externe des grains. En effet, la thermodynamique nous indique et nous impose que pour atteindre l’équilibre naturel ζ eq il faut, au-delà de l’équilibre thermique, qu’à la fois l’équilibre mécanique et l’équilibre osmotique soient atteints ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Opérations unitaires. Génie de la réaction chimique

(365 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Discussion exemplifiée
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - LIVAGE (J.) -   Chimie douce : from shake-and-bake processing to wet chemistry.  -  New Journal of Chemistry, 1 (2001).

  • (2) - SANCHEZ (C.) et al -   Biomimetism and bioinspiration as tools for the design of innovative materials and systems.  -  Nature Materials, 4 (2005).

  • (3) - BRECHET (Y.) -   La Science des matériaux : du matériau de rencontre au matériau sur mesure.  -  Leçon inaugurale du Pr. Yves Bréchet au Collège de France (2013).

  • (4) - SANCHEZ (C.) -   Chimie de matériaux hybrides.  -  Cours du Collège de France. DOI : 10.4000/annuaire-cdf.11897 (2015).

  • (5) - BACKOV (R.) -   Combining soft matter and soft chemistry : “Integrative Chemistry” toward designing novel and complex architectures.  -  Soft Matter, 2, p. 452 (2006).

  • (6)...

ANNEXES

  1. 1 Brevets

    1 Brevets

    Procédé de préparation d’un matériau sous la forme d’un monolithe de silice poreux comprenant des nanoparticules d’oxyde de titane, ledit matériau et ses applications

    E. Layan, I. Ly, T. Toupance, T. Pigot, M. Le Bechec, R. Backov.

    Brevet français 2021, n° de dépôt FR21-13537. PCT/EP2022-085833.

    Métallo-oxydes nanoparticulaires monolithiques à porosité multi-échelles.

    I. Ly, R. Backov.

    Brevet français 2020, n° de dépôt FR20-58457. Extension internationale 2021 : PCT/FR2021/EP075529.

    Procédé de captation et de décontamination d’un milieu gazeux en présence d’un de monolithe comprenant du TiO2 et de la silice.

    S. Bernadet, A. Fécant, S. Ravaine, M. Le Bechec, S. Lacombe, R. Backov.

    Brevet français 2018, n° de dépôt FR18-53644.

    Procédé de captation et de décontamination photocatalytique mettant en œuvre un photocatalyseur sous forme de monolithe poreux à base de silice et de dioxyde de titane.

    S. Bernadet, A. Fécant, S. Ravaine, S. Lacombe, M. Le Bechec, R. Backov.

    Brevet français 2018, n° de dépôt FR18-63738.

    Monolithes poreux contenant du TiO2 et son procédé de préparation.

    S. Bernadet, A. Fécant, S. Ravaine, D. Uzio, R. Backov.

    Brevet français 2017, n° de dépôt FR17-53757. Extension internationale 2018 : PCT/FR2018/EP060376.

    Procédé de préparation d'un monolithe à porosité multimodale.

    S. Bernadet, A. Fécant, S. Ravaine, D. Uzio, R. Backov.

    Brevet français 2017, n° de dépôt FR17-53759. Extension internationale 2018 : PCT/FR2018/EP060380.

    Procédé de préparation de matériaux monolithiques alvéolaires et utilisations de ces matériaux.

    V. Schmitt, M. Destribats, R. Backov.

    Brevet français 2010, n° de dépôt FR10-58247. Extension internationale 2011 : PCT/FR11/052359.

    Monolithes...

    Cet article est réservé aux abonnés.
    Il vous reste 93% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Opérations unitaires. Génie de la réaction chimique

    (365 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS