Présentation
EnglishAuteur(s)
-
Bernard TRÉMILLON : Ingénieur de l’École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI) - Professeur honoraire des universités - Ancien directeur de l’École Nationale Supérieure de Chimie de Paris
-
Gérard DURAND : Docteur ès sciences - Professeur à l’École Centrale de Paris - Directeur du Laboratoire de Chimie et Génie des Procédés de l’ECP
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Comme il a été souligné dans l’introduction générale , l’étude et la mise au point de tout procédé électrochimique doit débuter par une étude analytique ayant pour but de caractériser les processus mis en œuvre, suivant une méthodologie expérimentale qui est désignée par l’appellation de voltampérométrie (ou voltamétrie) et qui consiste à déterminer la variation du courant d’électrolyse à une électrode (indépendamment de ce qui se passe à l’autre électrode) en fonction de son potentiel (voltampérogramme, exprimant la relation courant-potentiel d’électrode).
La caractérisation obtenue est globale, c’est-à-dire intègre les contributions de tous les processus physico-chimiques qui interviennent à l’électrode considérée et dans l’électrolyte à son contact, dans les conditions qui doivent être celles de l’électrolyse envisagée. Dès lors, l’interprétation de la caractéristique voltampérométrique expérimentale permet d’accéder à la connaissance des dits processus. Mais, à l’inverse, cette caractérisation globale est adaptée à la sélection des conditions de réalisation d’une opération électrochimique telle que celles qui donnent lieu aux procédés industriels.
La relation courant-potentiel d’électrode peut faire l’objet d’une étude prévisionnelle basée sur les caractéristiques théoriques des processus électrochimiques, qui ont été exposées dans l’article « Électrochimie. Lois régissant les processus ». Le présent article a maintenant pour objet de décrire (succinctement) la morphologie prévisible des caractéristiques courant-potentiel d’électrode, en envisageant notamment la dépendance de celles-ci vis-à-vis des divers facteurs physiques et surtout chimiques (influence chimique du milieu électrolytique sur les constituants électroactifs en solution, suivant leurs propriétés acido-basiques ou leur aptitude à la formation de complexes et/ou de composés insolubles).
Les caractéristiques courant-potentiel observables pour les systèmes électrochimiques impliquant les métaux sont traitées dans l’article [J 1 607] qui est la suite directe de cet article.
En ce qui concerne la voltampérométrie, celle-ci – ses principes et sa méthodologie – se trouve décrite dans les articles [P 2 125] et suivants de la rubrique « méthodes électrochimiques » du traité « Analyse et caractérisation ». Le lecteur est renvoyé à l’article spécifique de cette rubrique traitant de la voltampérométrie pour ce qui concerne la procédure expérimentale de cette méthode d’étude, qui ne sera pas décrite à nouveau ici.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Morphologie théorique des caractéristiques courant-potentiel
3.1 Principe d’établissement de la relation courant-potentiel d’électrode
On a vu dans l’article que l’équation qui exprime la vitesse du processus à l’électrode – sous la forme j = f (E) – fait intervenir les concentrations des réactifs à la surface de celle-ci (où se produit le transfert de charge). Ces concentrations sont variables au cours de l’exploration voltampérométrique, en étant reliées à la valeur de j et aux concentrations hors de la couche de diffusion par les équations exprimant le régime de transport diffusionnel stationnaire des substances intervenant dans l’équation de vitesse (autant de relations que de substances en jeu). Par combinaison de ces deux sortes d’équations, les grandeurs sont éliminées : on aboutit ainsi à une expression j = f (E) ne faisant plus intervenir, comme des paramètres invariables – compte tenu des conditions d’électrolyse en quantité négligeable (microélectrolyse) –, que les concentrations régnant dans la quasi-totalité de la solution (à l’exception seulement de la couche de diffusion, qui reste de très faible volume par rapport à l’ensemble de la solution).
HAUT DE PAGE3.2 Cas d’un système de simple transfert de charge Ox + n e− = Red
Il a été...
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Morphologie théorique des caractéristiques courant-potentiel
Cet article fait partie de l’offre
Opérations unitaires. Génie de la réaction chimique
(365 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive