Article de référence | Réf : AM3585 v1

Conclusion
Isosorbide : structure, propriétés, voies de synthèse et applications

Auteur(s) : Mathieu SAUTHIER, Isabelle SUISSE

Date de publication : 10 mai 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La valorisation de ressources naturelles est un enjeu crucial pour de futurs développements économiques. La biomasse végétale permet d’accéder à de nombreux composés capables de substituer les produits pétrosourcés. Cet article présente la molécule d’isosorbide qui fait partie de ces nouvelles molécules biosourcées d’intérêt et ses applications. L’isosorbide est un diol obtenu en trois étapes à partir de l’amidon, voire de la cellulose, et qui est utilisé, après fonctionnalisation, dans les industries pharmaceutique, cosmétique et de chimie de spécialités ou comme réactif dans des réactions de condensation avec des monomères permettant ainsi d’accéder à de nouveaux polymères ayant des propriétés améliorées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Mathieu SAUTHIER : Professeur des universités - Unité de catalyse et de chimie du solide (UCCS), université de Lille, Centrale Lille, ENSCL, UMR CNRS 8181, Villeneuve d’Ascq, France

  • Isabelle SUISSE : Maître de conférences - Unité de catalyse et de chimie du solide (UCCS), université de Lille, Centrale Lille, ENSCL, UMR CNRS 8181, Villeneuve d’Ascq, France

INTRODUCTION

L’utilisation de ressources carbonées biosourcées est une approche d’avenir pour la synthèse de produits « sans pétrole ». Cette approche se confronte néanmoins à une problématique de prix lorsque l’on compare ces composés biosourcés aux dérivés pétrosourcés. L’expérience montre qu’il ne suffit en général pas de reproduire des molécules existantes de la pétrochimie en biosourcé pour atteindre une valorisation commerciale viable. Bien souvent, il est attendu des alternatives biosourcées qu’elles possèdent des propriétés applicatives supérieures par rapport à celles des produits actuellement sur le marché.

Le glucose, molécule en C6, représente une ressource importante de carbone renouvelable. Il s’agit de ce fait d’une molécule de départ particulièrement attractive pour produire de la matière à fort tonnage. Néanmoins, pour atteindre une grande diversité de produits d’usage, il est bien souvent nécessaire de le transformer chimiquement. La molécule peut ainsi être oxydée, réduite, oligomérisée, fonctionnalisée ou être découpée en briques plus petites (C1, C2, …, C5). L’isosorbide est un des composés issus du glucose dont le nombre de carbones est conservé (C6). Son origine agrosourcée et surtout sa structure particulièrement singulière lui ouvrent les portes vers de nombreuses applications dont on observe qu’elles se diversifient rapidement. En outre, le succès commercial de l’isosorbide a notamment été rendu possible par une mise sur le marché de la molécule avec de très hauts degrés de pureté.

Cet article présente la molécule d’isosorbide, sa structure et son origine. L’objectif est également de présenter les différentes voies de synthèse, bien souvent catalytiques, qui se sont développées pour accéder de manière efficace à la molécule. Des aspects de sélectivité de réaction ou de polymérisation des intermédiaires de réaction sont autant d’éléments qui contribuent à limiter les rendements de réaction. L’article présente ensuite les avantages industriels liés à l’incorporation de la molécule dans des matériaux ainsi que les transformations chimiques qui permettent de moduler ses propriétés pour des applications toujours plus diversifiées.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-am3585


Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

5. Conclusion

L’isosorbide fait partie de ces molécules biosourcées d’avenir dont l’utilisation s’intensifie. La production industrielle est déjà bien établie et possède une marge de développement conséquente si l’on envisage à terme de rejoindre des volumes de production proches de ceux des composés pétrosourcés. Étant donné les tonnages de production, il est assez évident que quelques points de rendement de synthèse gagnés représenteraient un gain notable. Ce gain est d’autant plus crucial que le coût de la matière biosourcée est bien souvent une limitation à son développement. Les progrès en synthèse et purification ainsi que l’intensification des procédés ouvrent justement des perspectives de diminution du coût de l’isosorbide. L’utilisation de glucose issu de matière lignocellulosique est également un aspect important pour l’avenir de cette industrie qui s’appuie pour l’instant essentiellement sur l’utilisation de glucose issu de l’amidon. La production est tirée par les nombreux domaines d’applications de cette molécule qui incluent la production de matériaux, de produits cosmétiques ou de molécules d’intérêt thérapeutique. Ces évolutions s’appuient sur des innovations qui sont nécessaires pour ouvrir de nouveaux marchés en répondant à un besoin sociétal clef lié à l’utilisation de carbone renouvelable dans les produits qui nous entourent.

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ARICO (F.) -   Isosorbide as biobased platform chemical : Recent advances.  -  Current Opinion in Green and Sustainable Chemistry, vol. 20, p. 82-88 (2020).

  • (2) - MULLER, HOFFMANN -   *  -  . – German Patent 488, p. 602 (1927) ; US Patent 1, 757, p. 468 (1930).

  • (3) - HOCKETT (R.C.), FLETCHER (H.G.), SHEFFIELD (E.L.), GOEPP Jr (R.M.) -   Hexitol anhydrides. The structure of Isosorbide, a cristalline dianhydrosorbitol.  -  J. Am. Chem. Soc., p. 927-930 (1946).

  • (4) - CHE (P.), LU (F.), NIE (X.), HUANG (Y.), YANG (Y.), WANG (F.), XU (J.) -   Hydrogen bond distinction and activation upon etherification of hydroxyl compounds.  -  Chem. Commun., vol. 51, p. 1077-1080 (2015).

  • (5) - SHAIKH (A.L.), KALE (A.S.), SHAIKH (M.A.), PURANIK (V.G.), DESHMUKH (A.R.A.S.) -   Asymmetric synthesis of β-lactams by [2 + 2] cycloaddition using 1,4 :3,6-dianhydro-d-glucitol (isosorbide) derived chiral pools.  -  Tetrahedron, vol. 63, n° 16, p. 3380-3388 (2007).

  • ...

1 Sites Internet

Durabio™, polycarbonate à base d'isosorbide commercialisé par Mitsubishi Chemical

https://www.mcp-global.com/fr/europe/products/brand/durabioTM/

Performance materials solutions for the polymer industry :

https://www.roquette.com/media-center/resources/performance-materials-brochure-solutions-polymer-industry

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Chimie verte

(163 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS