Présentation

Article

1 - DÉFINITIONS ET PRÉCISIONS SUR L'APPLICATION DE L'ANAÉROBIOSE EN ASSAINISSEMENT

2 - PROCESSUS BIOCHIMIQUES ANAÉROBIES DANS LA MÉTHANISATION DES LIQUIDES

  • 2.1 - Hydrolyse et acidification
  • 2.2 - Acétogénèse
  • 2.3 - Méthanogénèse
  • 2.4 - Énergie libérée en anaérobiose

3 - MAÎTRISE TECHNOLOGIQUE DE L'ANAÉROBIOSE : LES DIFFÉRENTS PROCÉDÉS

4 - CONCEPTION DES RÉACTEURS – HYDRAULIQUE ET AÉRODYNAMIQUE DES RÉACTEURS

5 - CONTRÔLE INDUSTRIEL DES RÉACTIONS BIOCHIMIQUES DANS LES RÉACTEURS

  • 5.1 - Démarrage et arrêt des installations
  • 5.2 - Paramètres du suivi de l'exploitation
  • 5.3 - Automatisation du suivi
  • 5.4 - Incidents et accidents : mesures préventives et curatives

6 - DIMENSIONNEMENT ET PERFORMANCE DES DIFFÉRENTES TECHNOLOGIES

7 - COMPOSITION, VALORISATION ET PURIFICATION DU BIOGAZ

8 - DEVENIR DE L'AZOTE

  • 8.1 - Azote ammoniacal
  • 8.2 - Nitrates

9 - CONCLUSION

Article de référence | Réf : G1305 v1

Composition, valorisation et purification du biogaz
Traitements biologiques anaérobies des effluents industriels

Auteur(s) : Paul BOULENGER, Yannick GALLOUIN

Date de publication : 10 août 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Longtemps délaissée par les industriels français, la technologie d’épuration biologique anaérobie des effluents suscite enfin un intérêt depuis quelques années auprès des industriels. La méthanisation des eaux usées permet non seulement de produire un biogaz énergétique riche en méthane, mais aussi de réduire considérablement la production des boues biologiques. Cet article décrit les processus biochimiques et les différentes étapes de la fermentation méthanique. La conception et le dimensionnement des réacteurs sont détaillés, ainsi que les paramètres en jeu dans le contrôle industriel de cette technologie. De par la production d’une énergie verte à partir de la pollution organique, la méthanisation s’inscrit parfaitement dans la démarche de développement durable.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Paul BOULENGER : Ingénieur ENSIA - Ingénieur constructeur conseil, PBOrganisation

  • Yannick GALLOUIN : Ingénieur constructeur conseil, PBOrganisation

INTRODUCTION

Lpparue au niveau industriel dans les années 1970, la méthanisation, technologie d'épuration biologique anaérobie des effluents, a rencontré beaucoup de difficultés pour se développer en France alors qu'elle connaissait un essor considérable dans de nombreux pays européens et américains. Elle a connu un développement exceptionnel dans des pays comme le Brésil et connaît une véritable explosion dans le Sud-Est asiatique, en particulier en Chine.

En France, cette technologie a souffert d'une prise de conscience tardive de la part de nombreux constructeurs et a été l'objet d'un nombre significatif de contre-références qui ont freiné son développement dans les années 1980-1990. Elle est toujours l'objet d'idées préconçues et fausses en même temps qu'elle est peu ou mal connue de nombreux enseignants et prescripteurs.

Nous observons depuis quelques années un ralliement des grands constructeurs français et des industries vers cette technologie autrefois délaissée. Les problèmes énergétiques actuels entraînent un engouement pour cette voie d'épuration. À tels points que certains industriels sont prêts à collecter des déchets organiques chez d'autres industriels pour produire de l'énergie.

Les deux caractéristiques principales de la méthanisation des eaux usées sont la production d'un biogaz riche en méthane et une réduction considérable de la production des boues biologiques en excès. Cette technologie est remarquablement adaptée au traitement des eaux usées industrielles. De plus, la méthanisation est une technologie qui s'inscrit parfaitement dans la démarche de développement durable. Elle permet la production d'une énergie verte, du biogaz, à partir de la pollution organique.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-g1305


Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

7. Composition, valorisation et purification du biogaz

Comme nous l'avons vu précédemment, la méthanisation transforme essentiellement la matière organique dégradée en un gaz énergétique appelé « biogaz » et composé de différents gaz issus des réactions biologiques.

7.1 Composition du biogaz

La composition du biogaz produit est variable dans des proportions qui peuvent être importantes et est liée à plusieurs facteurs qui ne sont pas totalement connus. Ce sont en particulier :

  • la nature des effluents à traiter (proportion de carbone, hydrogène, azote, soufre et oxygène) ;

  • le taux de préacidification des effluents à l'entrée des réacteurs ;

  • la teneur en MES des effluents ;

  • et aussi la technologie d'épuration mise en œuvre.

Durant la fermentation méthanique, les composés organiques sont finalement convertis en méthane et en dioxyde de carbone et la proportion de chacun peut être déterminée selon l'équation de Buswell suivante, à condition de connaître les composés organiques présents dans l'eau :

C n H a O b +( n a 4 b 2 ) H 2 O( n 2 + a 8 b 4 ) CH 4 +( n 2 a 8 + b 4 ) CO 2

Les différents composés généralement présents dans le biogaz sont les suivants :

  • le méthane (CH4) : sa teneur...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Composition, valorisation et purification du biogaz
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - FREDERIC (S.), LUGARDON (A.) -   Métharisation des effluents industriels liquides  -  [J 3 943]. Base documentaire Opérations unitaires. Génie de la réaction chimique (2009).

1 Sources bibliographiques

MULDER (R.) - Biological wastewater treatment for industrial effluents : technology and operation. - Paques BV (2003).

ROUX (B.), FARDEAU (M.-L.), ARNAUD (T.), GARCIA (J.-L.) - Fermentation méthanique d'effluents viticoles : utilisation d'un inoculum adapté. - Actes de colloque, 2e congrès international sur le traitement des effluents vinicoles, Cemagref 1998, Bordeaux (France), 5-7 mai 1998.

CAMILLERI (C.) - Startup of fixed film stationary bed anaerobic reactors in anaerobic digestion. - 5th International Symposium Bologne....

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Bioprocédés et bioproductions

(161 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS