Présentation
En anglaisRÉSUMÉ
Longtemps délaissée par les industriels français, la technologie d’épuration biologique anaérobie des effluents suscite enfin un intérêt depuis quelques années auprès des industriels. La méthanisation des eaux usées permet non seulement de produire un biogaz énergétique riche en méthane, mais aussi de réduire considérablement la production des boues biologiques. Cet article décrit les processus biochimiques et les différentes étapes de la fermentation méthanique. La conception et le dimensionnement des réacteurs sont détaillés, ainsi que les paramètres en jeu dans le contrôle industriel de cette technologie. De par la production d’une énergie verte à partir de la pollution organique, la méthanisation s’inscrit parfaitement dans la démarche de développement durable.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Long overlooked by French industrialists, the anaerobic biological purification of effluents has recently come to their attention. The methanization of wastewater does not only produce an energetic biogas rich in methane, but also significantly reduces the production of biological sludge. This article describes the biochemical processes and the various stages of methane fermentation. The design and sizing of reactors are detailed as well as the parameters involved in the industrial control of this technology. Due to the production of green energy from organic pollution, methanization is fully in line with the sustainable development approach.
Auteur(s)
-
Paul BOULENGER : Ingénieur ENSIA - Ingénieur constructeur conseil, PBOrganisation
-
Yannick GALLOUIN : Ingénieur constructeur conseil, PBOrganisation
INTRODUCTION
Apparue au niveau industriel dans les années 1970, la méthanisation, technologie d'épuration biologique anaérobie des effluents, a rencontré beaucoup de difficultés pour se développer en France alors qu'elle connaissait un essor considérable dans de nombreux pays européens et américains. Elle a connu un développement exceptionnel dans des pays comme le Brésil et connaît une véritable explosion dans le Sud-Est asiatique, en particulier en Chine.
En France, cette technologie a souffert d'une prise de conscience tardive de la part de nombreux constructeurs et a été l'objet d'un nombre significatif de contre-références qui ont freiné son développement dans les années 1980-1990. Elle est toujours l'objet d'idées préconçues et fausses en même temps qu'elle est peu ou mal connue de nombreux enseignants et prescripteurs.
Nous observons depuis quelques années un ralliement des grands constructeurs français et des industries vers cette technologie autrefois délaissée. Les problèmes énergétiques actuels entraînent un engouement pour cette voie d'épuration. À tels points que certains industriels sont prêts à collecter des déchets organiques chez d'autres industriels pour produire de l'énergie.
Les deux caractéristiques principales de la méthanisation des eaux usées sont la production d'un biogaz riche en méthane et une réduction considérable de la production des boues biologiques en excès. Cette technologie est remarquablement adaptée au traitement des eaux usées industrielles. De plus, la méthanisation est une technologie qui s'inscrit parfaitement dans la démarche de développement durable. Elle permet la production d'une énergie verte, du biogaz, à partir de la pollution organique.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Environnement - Sécurité > Environnement > Eaux industrielles > Traitements biologiques anaérobies des effluents industriels > Composition, valorisation et purification du biogaz
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Bioprocédés et bioproductions > Biotech pour l'environnement > Traitements biologiques anaérobies des effluents industriels > Composition, valorisation et purification du biogaz
Accueil > Ressources documentaires > Environnement - Sécurité > Métier : responsable environnement > Biotech pour l'environnement > Traitements biologiques anaérobies des effluents industriels > Composition, valorisation et purification du biogaz
Cet article fait partie de l’offre
Technologies de l'eau
(109 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Composition, valorisation et purification du biogaz
Comme nous l'avons vu précédemment, la méthanisation transforme essentiellement la matière organique dégradée en un gaz énergétique appelé « biogaz » et composé de différents gaz issus des réactions biologiques.
7.1 Composition du biogaz
La composition du biogaz produit est variable dans des proportions qui peuvent être importantes et est liée à plusieurs facteurs qui ne sont pas totalement connus. Ce sont en particulier :
-
la nature des effluents à traiter (proportion de carbone, hydrogène, azote, soufre et oxygène) ;
-
le taux de préacidification des effluents à l'entrée des réacteurs ;
-
la teneur en MES des effluents ;
-
et aussi la technologie d'épuration mise en œuvre.
Durant la fermentation méthanique, les composés organiques sont finalement convertis en méthane et en dioxyde de carbone et la proportion de chacun peut être déterminée selon l'équation de Buswell suivante, à condition de connaître les composés organiques présents dans l'eau :
Les différents composés généralement présents dans le biogaz sont les suivants :
-
le méthane (CH4) : sa teneur dans le biogaz peut varier de 60 à 90 % ;
-
le dioxyde de carbone (CO2) : ce gaz représente en pratique l'essentiel du complément à 100 %. Le biogaz issu de la méthanisation des liquides contient généralement entre 10 et 30 % (moyenne 20-25 %) de CO2 . Le biogaz issu de la digestion des solides en contient une quantité généralement supérieure = 35 à 50 % ;
-
l'hydrogène sulfuré (H2S) : la teneur de ce composé dans le biogaz est dépendant de la teneur en produits soufrés dans les effluents à traiter. Présent le plus souvent à des teneurs inférieures à 0,5-1 %, il peut, dans certains cas, représenter jusqu'à 4-5 % du biogaz. Si la présence de SOx doit être évitée dans les fumées, une désulfuration du biogaz devra...
Cet article fait partie de l’offre
Technologies de l'eau
(109 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Composition, valorisation et purification du biogaz
BIBLIOGRAPHIE
ANNEXES
MULDER (R.) - Biological wastewater treatment for industrial effluents : technology and operation. - Paques BV (2003).
ROUX (B.) - FARDEAU (M.-L.) - ARNAUD (T.) - GARCIA (J.-L.) - Fermentation méthanique d'effluents viticoles : utilisation d'un inoculum adapté. - Actes de colloque, 2e congrès international sur le traitement des effluents vinicoles, Cemagref 1998, Bordeaux (France), 5-7 mai 1998.
CAMILLERI (C.) - Startup of fixed film stationary bed anaerobic reactors in anaerobic digestion. - 5th International Symposium Bologne....
Cet article fait partie de l’offre
Technologies de l'eau
(109 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive