Présentation
EnglishRÉSUMÉ
Le domaine térahertz aussi appelé « infrarouge lointain », reste une zone du spectre électromagnétique peu utilisée par les industriels. La cause principale est un manque certain de sources et de détecteurs compacts et performants, compatibles avec les exigences industrielles. Avec les avancées sur l’électronique ultra-haute fréquence et l’optique, des équipements deviennent plus performants sur une large bande de fréquences avec plus de puissance pour l’émission et plus de sensibilité en détection. Cet article propose d’éclairer des nouveautés récentes qui enrichissent l’exploitation de cette onde. De nombreuses applications industrielles seront détaillées.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Patrick MOUNAIX : Directeur de recherche, CNRS IMS UMR CNRS 5218, Bât. A31, 351 cours de la Libération, Talence Cedex, France
INTRODUCTION
Le rayonnement térahertz (THz) est un candidat prometteur pour la radiographie industrielle et de nombreuses applications d’imagerie pour le contrôle non destructif CND en raison de ses nombreuses applications uniques et intéressantes propriétés. Dans le spectre électromagnétique, les ondes térahertz (THz) ou ondes submillimétriques sont situées entre l’infrarouge et les micro-ondes. La bande (ou gap) térahertz (THz) s’étale de 100 GHz à 10 THz, correspondant à une longueur d’onde d’environ 3 à 0,03 mm. Ce sont des rayonnements de très faible énergie, quelque meV, qui interagissant avec la matière principalement par des modes collectifs de vibration et de rotation des molécules. Ces rayonnements ont la propriété d’être très pénétrants dans les matériaux diélectriques ou peu conducteurs. Cette propriété permet d’obtenir des informations qualitatives ou quantitatives sur les matériaux par exemple la présence de défauts par des techniques d’imagerie, leur composition et le contrôle de leurs dimensions par spectroscopie. Les avantages de la technologie térahertz sont nombreux : une analyse en profondeur dans les matériaux diélectriques, une résolution submillimétrique, un rayonnement non ionisant donc sans danger pour l’opérateur, un diagnostic sans contact donc sans altération de la pièce ou de la surface de la pièce et une forte capacité à la détection ou la mesure de l’humidité.
Cependant, la mise en œuvre de sources térahertz reste difficile en raison des limitations actuelles de la technologie du silicium, et peu des recherches ont été menées. Tous ces systèmes d’imagerie sont, par conséquent, contraints à des améliorations progressives qui sont liées à la dynamique des progrès technologiques.
Grâce à la recherche en laboratoire dans les domaines de l’électronique ultra-haute fréquence et de l’optoélectronique, le développement de systèmes CND térahertz est maintenant rendu possible, notamment par le perfectionnement des briques technologiques et la baisse des coûts de fabrication de leurs composants. La technologie térahertz est applicable à différents secteurs de l’industrie tels que le bâtiment, les transports ou encore l’agroalimentaire.
MOTS-CLÉS
Imagerie térahertz Infrarouge lointain Caméra THZ Contrôle non destructif THz Holographie THz Communication THz
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Innovation > Innovations technologiques > Innovations en analyses et mesures > Avancées technologiques des sources et capteurs térahertz - Vers le transfert industriel > Évolution dans le temps des nouvelles technologies
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Évolution dans le temps des nouvelles technologies
Depuis les années 1990 où les ondes térahertz sont devenues plus facilement exploitables, les attentes des scientifiques et des industriels autour de leur emploi ont suivi des phases d’engouement puis des phases de doutes et de déceptions. Cette évolution suit le cycle de Gartner donné figure 1 qui décrit l’évolution dans le temps des nouvelles technologies.
(1) Une percée technologique potentielle donne le coup d’envoi et suscite un fort intérêt pour les différentes communautés scientifiques, économiques et industrielles. Les premières validations de principe et l’intérêt des médias déclenchent alors une publicité importante. Souvent, aucun produit utilisable n’existe et la viabilité commerciale n’est pas prouvée. Puis s’ensuit un pic des attentes démesurées.
(2) La publicité précoce produit un certain nombre d’histoires de réussite – souvent accompagnées de dizaines d’échecs. Puis viennent la confrontation à la réalité industrielle et la désillusion.
(3) L’intérêt diminue à mesure que les expériences et les implémentations faillissent. Les producteurs de la technologie sont ébranlés ou vacillent. Les investissements ne se poursuivent que si les fournisseurs survivants améliorent leurs produits à la satisfaction des premiers utilisateurs. Puis survient la croissance.
(4) De plus en plus d’exemples illustrent comment la technologie peut profiter à l’entreprise. Cette nouvelle technique va être mieux comprise et diffusée. Les produits de deuxième et troisième générations proviennent de fournisseurs plus aguerris de technologie robuste et déployée « à façon » pour des objectifs spécifiques. Plus d’entreprises financent des projets pilotes ; et les entreprises conservatrices restent prudentes. Puis un plateau de productivité survient.
(5) L’adoption grand public commence à décoller critères d’évaluation de la viabilité des prestataires sont plus clairement définis. La large applicabilité et la pertinence de la technologie sur le marché sont clairement payantes.
C’est explicitement ce type de « succes story » que suivent les systèmes et la technologie « térahertz ». Cette lente évolution a été décrite dans de nombreux articles scientifiques.
Parmi toutes les...
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Évolution dans le temps des nouvelles technologies
BIBLIOGRAPHIE
-
(1) - HILLGER (P.), GRZYB (J.), JAIN (R.), PFEIFFER (U.R.) - Terahertz imaging and sensing applications with silicon-based technologies. - IEEE Transactions on Terahertz Science and Technology, vol. 9, n° 1, p. 1-19 (2019) DOI:10.1109/TTHZ.2018.2884852
-
(2) - ODEN (J.) et al - Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature. - Opt. Express, vol. 21, n° 4, p. 4817-4825 (2013) DOI:10.1364/OE.21.004817
-
(3) - AL HADI (R.) et al - A 1 k-pixel video camera for 0.7–1.1 terahertz imaging applications in 65-nm CMOS. - Solid-State Circuits, IEEE Journal of, vol. 47, n° 12, p. 2999-3012 (2012) DOI:10.1109/jssc.2012.2217851
-
(4) - CAOL (C.) et al - A 410GHz CMOS push-push oscillator with an on- chip patch antenna. - IEEE ISSCC 2008, vol. 53, n° 11, p. 472 (2008).
-
(5) - HEINEMANN (B.) et al - SiGe HBT technology with fT/fmax of 300GHz/500GHz and 2,0 ps CML gate delay. - Technical Digest, International...
ANNEXES
1.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Sources, intégrateurs, services, imageurs
Lytid (fabricant et intégrateur de sources millimétriques et THz QCL) https://lytid.com
RD&D Vision (intégration de système de vision High Tech donc imageur mm radar) https://www.rd-vision.com
Teratonics (solution imagerie THz rapide) https://www.teratonics.com
Virginia Diodes (fournisseurs de sources et systèmes mm et sub mm) https://vadiodes.com/en/
Terakalis (expertise des défauts et propriétés internes des matériaux) https://www.terakalis.com/
TiHive (systèmes THz) https://www.tihive.com
III-V lab (photodiodes InGaAs et InP HBT) http://www.3-5lab.fr/rd_activities.php
MC2 technologies (modules T/R en bande W, scanner corporel bande W) https://www.mc2-technologies.com/fr/mm-imager-2/
Caméras
...
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive