Présentation

Article

1 - LUMIÈRE

2 - LUMIÈRE POLARISÉE

3 - ROTATION. DICHROÏSME CIRCULAIRE

4 - MOLÉCULES OPTIQUEMENT ACTIVES

5 - MÉTHODES DE MESURE

6 - APPLICATIONS

7 - CONCLUSION-PERSPECTIVE

Article de référence | Réf : R6470 v2

Lumière
Activité optique : dichroïsme circulaire

Auteur(s) : Jean-Claude MAURIZOT

Date de publication : 10 déc. 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

L’utilisation de l’activité optique, en particulier à travers le dichroïsme circulaire, fait aujourd’hui partie des approches physico-chimiques classiquement utilisées dans les laboratoires de chimie et surtout des sciences de la vie. La connaissance de ce paramètre permet une meilleure compréhension des phénomènes fondamentaux du vivant. Après avoir introduit les différentes formes de polarisation de la lumière, cet article présente les principales caractéristiques de l’activité optique. Sont décrits ensuite les deux phénomènes essentiels et intimement liés, qui sont la rotation optique et surtout le dichroïsme circulaire. Différentes applications du dichroïsme circulaire pour l’étude des petites molécules et des biomolécules sont présentées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

The use of optical activity, and in particular via circular dichroism, belongs to the most widely used physico-chemical approaches in chemistry and above all life science laboratories, to date. The knowledge of this parameter allows for a better understanding of the fundamental phenomena of living organisms. After introducing the various forms of light polarization, this article presents the main characteristics of optical activity. It then proceeds to describing two essential and strongly linked phenomena, namely the optical rotation and especially the circular dichroism. Various applications of the circular dichroism are presented for the study of small molecules and biomolecules.

Auteur(s)

  • Jean-Claude MAURIZOT : Ingénieur ENSCS - Directeur de recherche au CNRS - Centre de biophysique moléculaire (Orléans)

INTRODUCTION

Pratiquement tous les produits naturels, protéines, acides nucléiques, sucres, hormones, lipides, vitamines, antibiotiques, etc., manifestent le phénomène d’activité optique. Compte tenu du rôle important joué par les interactions entre ces différents types de molécules dans les processus biologiques, la connaissance de leur activité optique est cruciale pour la compréhension des phénomènes fondamentaux du vivant. De même la détermination de la chiralité ou de la pureté optique de certains composés est un élément extrêmement important dans l’industrie pharmaceutique ou alimentaire en raison des différences d’effets que peuvent présenter des isomères optiques.

La découverte de l’activité optique naturelle remonte au début du XIXe siècle avec Biot et Fresnel, et la première explication de l’origine de ce phénomène est due à Pasteur, en 1848. Ces avancées ont permis aux données de l’activité optique d’être parmi les premières utilisées, en particulier pour la caractérisation des molécules. La rotation molaire à la longueur d’onde de la raie D du sodium a longtemps été l’un des paramètres fournis dans la description d’un nouveau produit. Cependant, il a fallu attendre le milieu du XXe siècle pour que les mesures spectrales, en particulier la dispersion optique rotatoire, deviennent un outil utilisé en routine dans les laboratoires de chimie. Petit à petit, cette spectroscopie a laissé la place au dichroïsme circulaire qui est capable de fournir une information équivalente mais plus facile à mesurer et à interpréter que les spectres de dispersion optique rotatoire.

Dans un premier temps, nous décrirons la lumière (§ 1.) et ses différentes formes de polarisation (§ 2.) en nous basant principalement sur la théorie ondulatoire.

Après avoir décrit les principales caractéristiques de l’activité optique, nous présenterons les deux méthodes essentielles qui permettent de la mettre en évidence, la rotation optique et surtout le dichroïsme circulaire (§ 3.). Après avoir abordé les bases moléculaires de l’activité optique (§ 4.), nous donnerons des indications sur la manière de mesurer le dichroïsme circulaire (§ 5.). Enfin nous présenterons différentes applications du dichroïsme circulaire pour l’étude des petites molécules et des biomolécules (§ 6.).

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-r6470


Cet article fait partie de l’offre

Mesures mécaniques et dimensionnelles

(120 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

1. Lumière

Il existe deux approches, ondulatoire et quantique, pour caractériser la lumière.

1.1 Approche ondulatoire

Dans l'approche ondulatoire, on considère la lumière comme composée d'un champ électrique et d’un champ magnétique , perpendiculaires l'un à l'autre et tous deux perpendiculaires à la direction de propagation de la lumière, d'où le terme de « rayonnement électromagnétique » (figure 1). Chacun de ces champs se comporte comme une onde se déplaçant à une vitesse qui, dans le vide, est appelée « vitesse de la lumière », notée c. Pour la suite de cet exposé, nous n'utiliserons que le champ électrique .

Ci-dessus : Onde électromagnétique avec le champ électrique (en rouge) et le champ magnétique (en bleu) perpendiculaires à la direction de propagation de la lumière

L'amplitude du champ électrique associé à l'onde lumineuse est une fonction du temps et de l'espace : si l'onde lumineuse se propage selon l'axe z dans le vide, cette amplitude est décrite par la relation :

Plusieurs paramètres permettent de caractériser l'onde : la longueur d'onde, λ, qui représente la distance séparant...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures mécaniques et dimensionnelles

(120 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Lumière
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - DRAKE (A.F.) -   Polarisation modulation-the measurement of linear and circular dichroism  -  J. Phys. E : Sci. Instrum. 19 170-181 (1986).

  • (2) - LEWIS (J.W.), TILTON (R.F.), EINTERZ (C.M.), MILDER (S.J.), KUNTZ (I.D.), KLIGER (D.S.) -   New technique for measuring circular dichroism changes on a nanosecond time scale  -  Application to (carbonmonoxy)myoglobin and (carbonmonoxy)haemoglobin. J. Phys. Chem. 89 (2), 289-294 (1985).

  • (3) - MOFFITT (W.), WOODWARD (R.B.), MOSCOWITZ (A.), KLYNE (W.), DJERASSI (C.) -   Structure and the Optical Rotatory Dispersion of Saturated Ketones  -  J. Am. Chem. Soc. 83 (19) 4013–4018 (1961).

  • (4) - WELLMAN (K.M.), BRIGGS (W.S.), DJERASSI (C.) -   Optical Rotatory Dispersion Studies. C. Variable-Temperature Circular Dichroism Studies of Ring-Conformational and Rotational Equilibria in Cyclohexanones  -  J. Am. Chem. Soc., 87 (1) 73-81 (1965).

  • (5) - GAWRONSKY (J.K.) -   Circular Dichroism and Chirality of Dienes. In Circular Dichroism : Principles and Appplications  -  Second Edition N Berova, K. Nakanishi, RW Woody Eds. Wiley-VCH publishers, New York, p 305-335 (2000).

  • ...

DANS NOS BASES DOCUMENTAIRES

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mesures mécaniques et dimensionnelles

(120 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS