Présentation
EnglishRÉSUMÉ
Un ICP-OES est un appareil qui résulte du couplage entre un plasma d'argon induit par haute fréquence et un spectromètre. C’est un instrument de mesure destiné à réaliser des analyses élémentaires par spectrométrie d'émission atomique. Cet appareil se caractérise par une grande souplesse, tant en ce qui concerne le type d'échantillon analysé (liquide aqueux ou solvants organiques, solutions chargées en sels dissous), que des éléments analysés (plus de 70), et cela à plusieurs longueurs d'onde. Technique multi-élémentaire, elle peut être qualitative mais est surtout employée pour effectuer des analyses quantitatives. Les divers principes de fonctionnement, les performances analytiques ainsi que l'état du marché sont décrits dans cet article.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jérôme FRAYRET : Ingénieur de recherche de l'université de Pau et des pays de l'Adour - Docteur ès sciences - IPREM/LCABIE, UMR 5254, Pau
-
Jean-Michel MERMET : Ingénieur de l'École nationale supérieure de chimie de Strasbourg - Docteur ès sciences - Spectroscopy Forever, Tramoyes
-
Hugues PAUCOT : Docteur ès sciences - UT2A – Ultra Traces Analyses Aquitaine, Pau
INTRODUCTION
Le choix d'une méthode analytique est avant tout déterminé par les espèces d'intérêt, leur nombre et les concentrations recherchées, mais aussi par la matrice de l'échantillon et les interférences qu'elle est susceptible de générer. Outre les coûts d'investissement et de fonctionnement, il convient également de tenir compte dans son choix de la cadence analytique. En ce qui concerne l'analyse élémentaire, aucune technique de spectrométrie atomique ne peut à ce jour se prévaloir de combiner l'ensemble des qualités souhaitées. Parmi toutes les techniques disponibles à ce jour, l'ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry) ou ICP-AES (-Atomic Emission Spectrometry), introduit commercialement dès 1974, est particulièrement répandu dans les laboratoires occidentaux et affiche une popularité sans cesse croissante dans les pays émergents.
Pour éviter toute confusion avec la spectrométrie Auger, l'IUPAC recommande généralement l'usage de OES.
Cette technique de quantification, relativement simple d'utilisation, est basée sur l'analyse par spectrométrie optique de photons générés par un plasma à couplage inductif. Outre l'obtention de limites de détection de l'ordre du μg/L en phase dissoute et inférieure au mg/kg en phase solide, elle est également la seule à supporter l'introduction d'échantillons liquides extrêmement chargés en sels et l'analyse de solvants organiques avec une relative facilité. En outre, elle se caractérise par un panel important d'éléments déterminables (plus de 70) et une grande cadence analytique. L'ensemble de ces caractéristiques justifie amplement son succès.
Outre un rappel théorique, cet article réalise une description approfondie de l'appareillage, y compris les développements récents. Il met en évidence les problèmes liés aux interférences et les moyens de les corriger, et présente les performances de la technique ainsi que de nombreux exemples d'application.
MOTS-CLÉS
VERSIONS
- Version archivée 1 de oct. 1988 par Jean-Michel MERMET, Jacques ROBIN, Christian TRASSY
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Instrumentation
3.1 Génération d'un plasma
Pour l'analyse chimique, on utilise généralement un plasma de gaz rare, dont les propriétés sont relativement indépendantes de l'échantillon. Pour cela, on ionise le gaz rare à l'aide d'électrons accélérés par un champ électromagnétique. Ces électrons sont créés préalablement par une décharge annexe. Ils rentrent ainsi en collision avec les atomes du gaz rare et les ionisent.
Les plasmas sont classés suivant le type de champ électrique : champ continu, champ haute fréquence ou champ micro-ondes. Dans tous les cas, il est nécessaire de disposer d'un générateur électrique pour créer ce champ. Si le champ continu a été très utilisé dans les années 1970 au travers du plasma arc (Direct Current Plasma ou DCP), il a été par la suite supplanté par le champ haute fréquence. Ce champ est fourni par un générateur au travers d'un inducteur, ce qui a conduit à l'appeler plasma induit par haute fréquence ou Inductively Coupled Plasma, bien que la composante capacitive soit loin d'être négligeable. L'acronyme anglais, ICP, est le plus couramment utilisé. À noter que l'utilisation d'un champ micro-ondes (Microwave Induced Plasma ou MIP) est restée très spécifique à quelques applications, mais ce champ permet de créer des plasmas d'air ou d'azote pour des puissances équivalentes à celles d'un plasma induit par haute fréquence.
Le recours à un générateur électrique entraîne un surcoût par rapport à une flamme, mais permet un contrôle de l'apport d'énergie au travers de sa puissance et de sa fréquence. Comme il a été dit précédemment (§ 2.5), sa stabilité est cruciale pour éviter les problèmes de dérive. Les fréquences industrielles HF autorisées sont la fréquence de...
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Instrumentation
BIBLIOGRAPHIE
-
(1) - TODOLI (J.L.), MERMET (J.-M.) - Liquid sample introduction in ICP spectrometry : a practical guide. - Elsevier (2008).
-
(2) - GANAN-CALVO (A.) - Enhanced liquid atomization : from flow-focusing to flow-blurring. - Appl. Phys. Lett., 86, p. 214101 (2005).
-
(3) - TODOLI (J.L.), MERMET (J.-M.) - Study of direct injection in ICP-AES using a commercially available micronebulizer associated with a reduced length torch. - J. Anal. At. Spectrom., 19, p. 1347 (2004).
-
(4) - CAUMETTE (G.), LIENEMANN (C.P.), MERDRIGNAC (I.), PAUCOT (H.), BOUYSSIERE (B.), LOBINSKI (R.) - Sensitivity improvement in ICP-MS analysis of fuels and light petroleum matrices using a microflow nebulizer and heated spray chamber sample introduction. - Talanta, 80, p. 1039 (2009).
-
(5) - FASSEL (V.A.), BEAR (B.R.) - Ultrasonic nebulization of liquid samples for analytical inductively coupled plasma atomic spectroscopy : an update. - Spectrochim. Acta, 41B, p. 1089 (1986).
-
...
DANS NOS BASES DOCUMENTAIRES
-
Excitation spectrographique – Plasmas induits par haute fréquence.
-
ICP-MS : couplage plasma induit par haute fréquence – spectrométrie de masse.
ANNEXES
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive