Présentation
EnglishRÉSUMÉ
L’intelligence artificielle (IA) est en pleine croissance ; elle interroge tous les publics : particuliers, professionnels et universitaires. Pour encadrer ces échanges, des principes et pratiques de mesure des performances, rationnelles et partagées, ainsi que ceux des limites de systèmes intelligents doivent être établis.
Cet article présente une approche méthodique et conforme aux règles de la métrologie, permettant d’en dessiner les grandes lignes :
- des métriques pour effectuer des mesures quantitatives et répétables de performance ;
- des environnements de test physiques et virtuels pour procéder à des expérimentations reproductibles et représentatives des conditions de fonctionnement réelles de l’IA évaluée et des outils organisationnels (benchmarking, challenges, compétitions).
Le tout répondant aux besoins de l’ensemble de l’écosystème.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Guillaume AVRIN : Responsable du département « Évaluation de l’IA » - Laboratoire national de métrologie et d’essais, Paris, France
INTRODUCTION
L’intelligence artificielle (IA) connaît depuis 2017 d’importants développements dans de nombreux secteurs professionnels (aide au diagnostic, identification biométrique, chatbot, détection de vulnérabilités et menaces de cybersécurité, robots industriels collaboratifs, robots d’inspection et de maintenance, système de mobilité autonome, etc.) et domestiques (robots d’assistance à la personne, dispositifs médicaux, assistants personnels, etc.). Elle est ainsi au rang des toutes premières priorités européennes et internationales de développement technologique et industriel et la rupture sanitaire de 2020 concourt à cette transformation vers une société plus « virtualisée », moins exposée aux vulnérabilités biologiques.
De manière à ce que le marché ne soit pas uniquement porté par l’offre, et que les conditions d’un rapprochement de cette dernière avec la demande soient réunies, il convient d’avoir à disposition des méthodes scientifiques et techniques d’évaluation de l’IA . Elle promet d’apporter des résultats quantitatifs et fiables concernant les niveaux de performance, de robustesse, d’explicabilité atteints par les différents systèmes d’IA. Les utilisateurs finaux disposeront ainsi des garanties conditionnant l’acceptabilité de ces technologies. Ils pourront choisir parmi différentes solutions existantes grâce à des références communes objectives et non ambiguës. Les développeurs bénéficieront quant à eux de repères pour orienter leurs efforts de R&D et de contrôle qualité, ainsi que d’outils pour démontrer leur avance et se démarquer de la concurrence. L’évaluation instaurera donc la confiance nécessaire à la transition d’une IA en développement vers une IA marchande.
Un travail de normalisation est en cours pour adapter les référentiels existants concernant le développement logiciel (IEC 62304 pour les dispositifs médicaux, ISO 26262 pour les véhicules routiers, etc.) aux spécificités de l’IA (notamment au Cen-Cenelec JTC21 et à l’ISO/IEC JTC1/SC42).
Ce travail portera notamment sur les outils et méthodes d’évaluation, dont deux approches génériques peuvent être distinguées (cf. ISO/IEC 17011) : l’audit et le test. Les audits consistent à analyser les preuves de conformité vérifiables, qualitatives ou quantitatives, telles que les enregistrements, les déclarations de faits, etc. La mise en œuvre des audits pour l’IA est similaire à celle des autres produits et technologies. Par exemple, le LNE a proposé un référentiel de certification des processus de mise au point de fonctionnalités d’IA reposant sur des audits . Bien que n’étant pas strictement liées aux audits de conformité, d’autres évaluations de l’IA reposant sur des jugements d’experts sont également présentées dans la littérature (par exemple le test de Turing). Les évaluations reposant sur des jugements humains sont généralement moins onéreuses à mettre en œuvre que le test lors de leur première instance, mais présentent des difficultés de passage à l’échelle lorsque le nombre de systèmes à évaluer est important, puisqu’elles ne sont pas automatisées. Elles sont également subjectives .
Les tests constituent une alternative aux évaluations reposant sur des jugements humains ou sur des preuves formelles (encore inaccessibles pour de nombreuses applications d’IA). Ils présentent quelques caractéristiques propres à l’IA détaillées dans le présent article.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Génie industriel > Industrie du futur > Industrie du futur : outils numériques > Évaluation de l’intelligence artificielle > Conclusion
Accueil > Ressources documentaires > Innovation > Innovations technologiques > Les grands événements de l'année > Évaluation de l’intelligence artificielle > Conclusion
Accueil > Ressources documentaires > Technologies de l'information > Technologies logicielles Architectures des systèmes > Intelligence artificielle > Évaluation de l’intelligence artificielle > Conclusion
Accueil > Ressources documentaires > Génie industriel > Métier : responsable qualité > Méthodes de mesure > Évaluation de l’intelligence artificielle > Conclusion
Accueil > Ressources documentaires > Innovation > Industrie du futur > Industrie du futur : outils numériques > Évaluation de l’intelligence artificielle > Conclusion
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Conclusion
Les tests d’évaluation de l’IA visent à estimer la valeur d’usage, les performances, les dangers pour la sécurité des biens et des personnes, l’impact positif ou négatif sur l’environnement de ces systèmes intelligents, y compris leur incidence sur les sociétés et les modes de vie individuels (conséquences socio-économiques, questions éthiques, juridiques, sociologiques, etc.). L’organisation adoptée pour ces tests, sous forme de campagnes, challenges ou compétitions, dépend de l’objectif visé : orientation des efforts de R&D, caractérisation des performances avant la mise sur le marché, benchmarking, certification volontaire et réglementaire, etc.
Ils constituent un nouvel enjeu lié au large potentiel de déploiement de ces technologies intelligentes dans notre société. Ils se heurtent cependant aux spécificités de l’IA : les systèmes intelligents ne se comportent pas comme les autres systèmes d’information. En raison des technologies sous-jacentes, leur comportement est souvent hautement non convexe, non linéaire et parfois chaotique, ce qui impose de recourir aux tests « entrée-sortie » pour apprécier leur performance. Ce comportement empêche également de recourir à des interpolations ou d’extrapolations de mesures comportementales associées à des scénarios spécifiques pour prédire leur fonctionnement dans de nouvelles situations.
Par ailleurs, les systèmes d’IA sont essentiellement dits intelligents en raison de leur capacité à s’adapter à des situations nouvelles et imprévues. Ils disposent d’un champ d’action « ouvert », variable et vaste. Leur évaluation exige donc qu’ils soient soumis à un grand nombre de situations de test (différentes conditions météorologiques, géométries d’obstacles, etc.). Il n’est évidemment pas possible de tester tous les scénarios que les conditions réelles de fonctionnement pourraient offrir. Pour des raisons de coût et de temps, la plupart de ces scénarios ne peuvent être générés que par des tests virtuels, mais les simulateurs utilisés pour réaliser ces tests soulèvent de nouvelles questions (exhaustivité, réalisme, interopérabilité, gouvernance, etc.).
Tout ceci confère aux tests virtuels une importance primordiale et stratégique dans le développement de l’IA. Le domaine de recherche de l’évaluation de l’IA...
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - EUROPÉENNE (C.) - Intelligence artificielle – Une approche européenne axée sur l’excellence et la confiance - (2020).
-
(2) - TEAM (A.P.) - Artificial Intelligence Measurement and Evaluation at the National Institute of Standards and Technology - (2021).
-
(3) - LNE - Certification de processus pour l’IA - (2021).
-
(4) - HERNANDEZ-ORALLO (J.) - The measure of all minds: evaluating natural and artificial intelligence - (2017).
-
(5) - AVRIN (G.), BARBOSA (V.), DELABORDE (A.) - AI evaluation campaigns during robotics competitions: the METRICS paradigm, - chez Evaluating Progress in AI (2022).
-
(6) - AVRIN (G.), DANIEL (B.), LARDY-FONTAN (S.), RÉGNIER (R.), RESCOUSSIÉ (R.), BARBOSA (V.) - Design...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
BIPM : Vocabulaire international de métrologie – Concepts fondamentaux et généraux et termes associés (VIM) 3e édition - JCGM 200 - 2012
ANNEXES
Projet METRICS (2020-2023, financé par H2020) – Metrological evaluation and testing of robots in international competitions
Objectif : organiser des compétitions de robots intelligents dans quatre domaines : santé, agroalimentaire, inspection et maintenance des infrastructures, production agile. Il s’agit notamment de bâtir une structure pérenne rassemblant l’ensemble des compétences européennes pour apporter conjointement une solution satisfaisante à la question de l’évaluation des systèmes robotisés, condition impérative de leur acceptabilité.
Consortium : LNE, Université Hochschule Bonn-Rhein-Sieg (BRSU), Centre avancé pour les technologies aérospatiales (FADA-CATEC), Centre pour la recherche et l’expérimentation maritimes de l’OTAN (OTAN-CMRE), CEA, E-CIVIS, Université Heriot-Watt, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Mines-Télécom Transfert (IMT Transfert), Ofiis, Polytechnique de Milan, Proxinnov, Robotex MTU, Université Tampere, Université de Milan, Université de Nottingham.
Projet 3SA (2020-2023, financé par IRT SystemX) – Simulation pour la sécurité des systèmes du véhicule autonome
Objectif : développer des outils et méthodologies reposant sur la simulation numérique pour démontrer la sécurité des véhicules autonomes.
Consortium : LNE, IRT SystemX, CEA, Apsys, AVsimulation, Expleo, PSA, Oktal-SE, Renault, SECTOR Group, Valeo.
https://www.irt-systemx.fr/projets/3sa/
Projet ROSE (2018-2022, financé par Ecophyto...
Cet article fait partie de l’offre
Instrumentation et méthodes de mesure
(50 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive