Présentation
RÉSUMÉ
Sont recensés deux types de méthodes de contact, selon la manière dont la perturbation thermique est assurée, par mise en contact, ou par une source de chaleur extérieure. De même, ces méthodes peuvent être classées suivant la grandeur mesurée : la température, le flux, ou les deux à la fois. Les études de sensibilité aux paramètres donnent des résultats très convenables, toutefois l'estimation de l'effusivité de ces méthodes (la capacité à échanger de l'énergie thermique avec son environnement) reste difficile, car affectée par les erreurs de mesure.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-Claude KRAPEZ : Ingénieur de recherche à l’Office National d’Études et de Recherches Aérospatiales - Ingénieur et Docteur de l’École Centrale de Paris
INTRODUCTION
Parmi les méthodes avec contact, il y a celles où la perturbation thermique est assurée par la mise en contact avec un deuxième corps à température différente, et celles où cette perturbation est assurée par une source de chaleur fixée à l’éprouvette à caractériser. Cette source de chaleur, généralement avec effet Joule, est soit pressée à la surface, soit insérée entre deux éprouvettes du même matériau.
Nous renvoyons le lecteur au dossier Conductivité et diffusivité thermique des solides, réf. [5] pour la classification des méthodes de caractérisation thermique selon la perturbation choisie : perturbation de type échelon (flux constant), de type Dirac (flux impulsionnel) et de type modulé (analyse du régime périodique), auxquelles on peut aussi ajouter les perturbations de type aléatoire.
De même, les méthodes peuvent être classées suivant que la grandeur mesurée est une température ou un flux, ou les deux à la fois. La mesure de température peut être effectuée à l’endroit même de la perturbation ou hors de la perturbation, ou les deux à la fois.
Dans ce dossier, nous mettrons un accent particulier sur les études de sensibilité aux paramètres (à l’effusivité et à d’autres propriétés thermiques du matériau, ainsi qu’aux paramètres définissant les conditions aux limites). En effet, si les sensibilités se montrent faibles ou corrélées les unes aux autres, l’estimation de l’effusivité sera difficile et très affectée par les erreurs de mesure (Mesure de l’effusivité thermique- Introduction, annexe 2]). Le bilan de cette présentation des méthodes par contact se trouve en Mesure de l’effusivité thermique- Introduction au paragraphe « Performances des méthodes ».
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mesures - Analyses > Techniques d'analyse > Méthodes thermiques d'analyse > Mesure de l’effusivité thermique - Méthodes par contact > Rectangle chaud, disque chaud (Hot Disk)
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Rectangle chaud, disque chaud (Hot Disk)
La technique de la source chaude limitée, comme le rectangle chaud ou le disque chaud permet de mesurer les quatre paramètres thermiques : conductivité, effusivité, diffusivité et capacité thermique volumique (deux d’entre eux sont mesurés, les deux autres sont déduits). La technique a été proposée en 1989 par S. GUSTAFSSON après des travaux de développement sur le ruban chaud [51]. Initialement présentée sous le vocable de source plane instationnaire (Transient Plane Source), la solution technologique a été déclinée sous la forme d’un disque chaud (Hot Disk) et d’un carré chaud (Hot Square). La sonde est un élément résistif agissant à la fois comme une source de chaleur mince, latéralement limitée, et comme un capteur de température. Elle est constituée d’un film de nickel de 10 µm enrobé d’un film de 25 à 30 µm en kapton ou de 100 µm en mica. Sur le film métallique est dessiné un circuit en double spirale (disque chaud, figure 39) ou en zig-zag (carré chaud). La variation de résistivité du nickel avec la température est suffisamment élevée, environ 0,004 K−1 pour permettre une mesure précise de la température de l’enroulement par l’intermédiaire d’une mesure de résistance dans un pont électrique. Le rapport signal sur bruit est suffisant pour que l’on puisse se contenter d’induire des perturbations thermiques ne dépassant guère le degré.
La taille de l’échantillon et, s’il est hétérogène, la dimension des éléments qui le composent, déterminent la dimension latérale de la sonde à utiliser : la distance de tout point de la sonde à la frontière latérale de l’échantillon doit être supérieure au diamètre de la sonde ; ce diamètre doit être largement supérieur à la taille maximale des particules constituant le matériau. Les sondes standards ont un diamètre compris entre un demi-millimètre et plusieurs centimètres. Le domaine de température que...
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Rectangle chaud, disque chaud (Hot Disk)
BIBLIOGRAPHIE
-
(1) - KRAPEZ (J.-C.) - Mesure de l’effusivité thermique. Méthodes photothermiques - . Techniques de l’Ingénieur, Mesure de l’effusivité thermique- Méthodes photothermiques, 09-2006.
-
(2) - CARSLAW (H.S.), JAEGER (J.C.) - Conduction of heat in solids - . Oxford, Clarendon Press, 2ème éd. 510 p., 1959.
-
(3) - FELDER (E.) - Effet thermique de la mise en forme - . Techniques de l’Ingénieur, [M 3 013], 09-2001.
-
(4) - CROCHEMORE (S.), NESA (D.), COUDERC (S.) - Analyse sensorielle des matériaux d’habitable automobile : toucher/vision - . Techniques de l’Ingénieur, [AM 3 292], 04-2004.
-
(5) - DEGIOVANNI (A.) - Conductivité et diffusivité thermique des solides - . Techniques de l’Ingénieur, Conductivité et diffusivité thermique des solides, 01-1994.
-
...
ANNEXES
Brevet USA 5 795 064, Method for determining thermal properties of a sample, Aug. 18, 1998.
Brevet USA 6 676 287, Direct thermal conductivity measurement technique, Jan. 13, 2004.
Brevet 0210749, Dispositif de mesure du rendu thermique d’un matériau, 30 août 2002.
HAUT DE PAGE
http://www.lept-ensam.u-bordeaux.fr/
http://www.ensem.inpl-nancy.fr/LEMTA/
http://www.univ-artois.fr/francais/rech/centres/pages/lamti/
http://www.npl.co.uk/thermal/ctm/
http://www.berlin.ptb.de/8/84/841/WAERME/841waermee.html
HAUT DE PAGECet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive