Présentation
RÉSUMÉ
Sont recensés deux types de méthodes de contact, selon la manière dont la perturbation thermique est assurée, par mise en contact, ou par une source de chaleur extérieure. De même, ces méthodes peuvent être classées suivant la grandeur mesurée : la température, le flux, ou les deux à la fois. Les études de sensibilité aux paramètres donnent des résultats très convenables, toutefois l'estimation de l'effusivité de ces méthodes (la capacité à échanger de l'énergie thermique avec son environnement) reste difficile, car affectée par les erreurs de mesure.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
According to the way in which thermal disturbance is generated, two contact methods are available, either through contact or via an external heat source. These methods can be classified according to the measurand: temperature, flow or both at the same time. Although the studies of sensitivity to parameters produce very satisfactory results, the assessment of the effusivity (i.e. the capacity to exchange thermal energy with the surroundings) of such methods remains difficult as it is affected by measurement errors.
Auteur(s)
-
Jean-Claude KRAPEZ : Ingénieur de recherche à l’Office National d’Études et de Recherches Aérospatiales - Ingénieur et Docteur de l’École Centrale de Paris
INTRODUCTION
Parmi les méthodes avec contact, il y a celles où la perturbation thermique est assurée par la mise en contact avec un deuxième corps à température différente, et celles où cette perturbation est assurée par une source de chaleur fixée à l’éprouvette à caractériser. Cette source de chaleur, généralement avec effet Joule, est soit pressée à la surface, soit insérée entre deux éprouvettes du même matériau.
Nous renvoyons le lecteur au dossier Conductivité et diffusivité thermique des solides, réf. [5] pour la classification des méthodes de caractérisation thermique selon la perturbation choisie : perturbation de type échelon (flux constant), de type Dirac (flux impulsionnel) et de type modulé (analyse du régime périodique), auxquelles on peut aussi ajouter les perturbations de type aléatoire.
De même, les méthodes peuvent être classées suivant que la grandeur mesurée est une température ou un flux, ou les deux à la fois. La mesure de température peut être effectuée à l’endroit même de la perturbation ou hors de la perturbation, ou les deux à la fois.
Dans ce dossier, nous mettrons un accent particulier sur les études de sensibilité aux paramètres (à l’effusivité et à d’autres propriétés thermiques du matériau, ainsi qu’aux paramètres définissant les conditions aux limites). En effet, si les sensibilités se montrent faibles ou corrélées les unes aux autres, l’estimation de l’effusivité sera difficile et très affectée par les erreurs de mesure (Mesure de l’effusivité thermique- Introduction, annexe 2]). Le bilan de cette présentation des méthodes par contact se trouve en Mesure de l’effusivité thermique- Introduction au paragraphe « Performances des méthodes ».
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mesures - Analyses > Techniques d'analyse > Méthodes thermiques d'analyse > Mesure de l’effusivité thermique - Méthodes par contact > Méthode du plan chaud
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Méthode du plan chaud
2.1 Principe général
Dans la méthode du plan chaud (figure 17), une source thermique sous la forme d’une nappe chauffante de faible épaisseur apporte l’énergie nécessaire à perturber le matériau (les dimensions typiques vont de quelques millimètres à quelques centimètres – voire décimètres – de diamètre, pour une épaisseur d’une centaine de µm).
La mesure de la température est effectuée dans le même plan, généralement au moyen d’un thermocouple. L’ensemble source de chaleur et capteur de température forme une sonde unique que l’on place entre deux échantillons d’un même matériau que l’on souhaite caractériser [18] [19]. Lorsque l’on ne peut pas disposer de deux tels échantillons, la sonde est simplement placée à la surface du matériau d’épreuve. Dans ce cas, pour limiter les échanges avec l’extérieur et faire en sorte que l’essentiel de la puissance fournie par la source aille dans le matériau, on peut recouvrir la sonde d’un matériau souple très isolant comme de la mousse polyuréthane. L’autre alternative consiste à ajouter un capteur fluxmétrique à la sonde. Ainsi l’on peut savoir quelle quantité de chaleur le matériau a réellement reçu, ce qui évite de devoir isoler parfaitement le système sonde/matériau ou, dans le cas contraire, de devoir quantifier les pertes [20] [21] [22] [23] [24] [25] [26].
Pour la mesure de la température, on peut avantageusement utiliser un thermocouple à fils séparés placé dans la région centrale de la zone chauffée, la jonction étant assurée par un dépôt de peinture d’argent. Cela permet de mesurer la température moyenne de cette région [18].
Pour l’approche fluxmétrique (figure 17 c), des capteurs spécifiques ont été développés qui comprennent un fluxmètre de type gradients tangentiels [27] et un thermocouple, le tout obtenu en couches minces sous la forme d’un circuit imprimé, ce qui confère au capteur une faible épaisseur : 0,1 à 0,2 mm pour une constante de temps de l’ordre de 1 s [20] [21] [22] [23]*....
Cet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Méthode du plan chaud
BIBLIOGRAPHIE
-
(1) - KRAPEZ (J.-C.) - Mesure de l’effusivité thermique. Méthodes photothermiques - . Techniques de l’Ingénieur, Mesure de l’effusivité thermique- Méthodes photothermiques, 09-2006.
-
(2) - CARSLAW (H.S.), JAEGER (J.C.) - Conduction of heat in solids - . Oxford, Clarendon Press, 2ème éd. 510 p., 1959.
-
(3) - FELDER (E.) - Effet thermique de la mise en forme - . Techniques de l’Ingénieur, [M 3 013], 09-2001.
-
(4) - CROCHEMORE (S.), NESA (D.), COUDERC (S.) - Analyse sensorielle des matériaux d’habitable automobile : toucher/vision - . Techniques de l’Ingénieur, [AM 3 292], 04-2004.
-
(5) - DEGIOVANNI (A.) - Conductivité et diffusivité thermique des solides - . Techniques de l’Ingénieur, Conductivité et diffusivité thermique des solides, 01-1994.
-
...
ANNEXES
Brevet USA 5 795 064, Method for determining thermal properties of a sample, Aug. 18, 1998.
Brevet USA 6 676 287, Direct thermal conductivity measurement technique, Jan. 13, 2004.
Brevet 0210749, Dispositif de mesure du rendu thermique d’un matériau, 30 août 2002.
HAUT DE PAGE
http://www.lept-ensam.u-bordeaux.fr/
http://www.ensem.inpl-nancy.fr/LEMTA/
http://www.univ-artois.fr/francais/rech/centres/pages/lamti/
http://www.npl.co.uk/thermal/ctm/
http://www.berlin.ptb.de/8/84/841/WAERME/841waermee.html
HAUT DE PAGECet article fait partie de l’offre
Mesures physiques
(119 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive