Présentation

Article

1 - PRINCIPE DE LA DIFFRACTION DES POUDRES

  • 1.1 - Théorie de la diffraction des rayons X
  • 1.2 - Direction du faisceau diffracté
  • 1.3 - Intensité des raies diffractées

2 - MÉTHODES EXPÉRIMENTALES DE DIFFRACTION DES POUDRES

3 - IDENTIFICATION DES PHASES

  • 3.1 - Description des fichiers
  • 3.2 - Méthodes d’identification de phases
  • 3.3 - Limites des méthodes de recherche de phases

4 - ANALYSE QUANTITATIVE

  • 4.1 - Effets de matrice
  • 4.2 - Échantillons polymorphes
  • 4.3 - Méthodes avec étalon

5 - APPLICATIONS CRISTALLOGRAPHIQUES

  • 5.1 - Indexation des diagrammes de poudres
  • 5.2 - Détermination précise des paramètres du réseau cristallin
  • 5.3 - Taille des cristallites et microcontraintes

6 - MESURE DES CONTRAINTES RÉSIDUELLES. TENSIONS INTERNES

7 - ÉTUDE DES ORIENTATIONS PRÉFÉRENTIELLES

Article de référence | Réf : P1080 v2

Analyse quantitative
Caractérisation de solides cristallisés par diffraction X

Auteur(s) : Norbert BROLL

Date de publication : 10 avr. 1996

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Norbert BROLL : Docteur ès Sciences - Directeur du laboratoire d’analyse de matériaux de la société FORTEX - Chargé d’enseignement et de recherche à l’École Nationale Supérieure des Arts et Industries de Strasbourg

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Lanalyse non destructive d’échantillons cristallisés par diffraction des rayons X est une méthode puissante pour résoudre de nombreux problèmes industriels et technologiques. Au début, cette technique était surtout utilisée pour déterminer, à partir d’échantillons monocristallins, les structures des cristaux. Par la suite, d’autres applications concernant la caractérisation des matériaux polycristallins ont été développées.

Parmi les appareils utilisés actuellement, c’est certainement le diffractomètre pour poudres qui est le plus courant dans les laboratoires industriels et universitaires.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-p1080


Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Analyse quantitative

L’analyse quantitative en diffraction X prend toujours plus d’importance ; elle consiste à déterminer les concentrations de chacune des phases cristallines qui constituent le matériau.

Les difficultés rencontrées lors d’une analyse quantitative sont dues à la préparation de l’échantillon et à la maîtrise des effets de matrice, c’est-à-dire à l’effet d’absorption dû aux phases associées à celle dosée.

4.1 Effets de matrice

Pour un échantillon homogène ne présentant pas d’orientations préférentielles, l’intensité Ii d’une raie du diagramme correspondant à la phase i est directement proportionnelle à la part du volume Vi de la phase et inversement proportionnelle au coefficient d’absorption linéaire µ* de l’échantillon.

Après transformation de cette expression en fonction de la concentration et en tenant compte de la loi d’additivité des coefficients d’absorption massique, on obtient la relation suivante pour l’intensité relative dans le cas d’un échantillon binaire comportant les deux phases i et m :

avec :

C i
 : 
concentration de i
 : 
intensité de la raie pour la phase i pure
 : 

La figure 11 représente la variation de l’intensité relative en fonction de la concentration pour les 3 cas possibles : absorption de la matrice plus grande, égale ou plus faible...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Analyse quantitative
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - GUINIER (A.) -   Théorie et technique de la radiocristallographie.  -  1956 Dunod, Paris.

  • (2) - CULLITY (B.D.) -   Elements of X-Ray diffraction.  -  1956 Addison-Wesley Publishing Company, Inc.

  • (3) - NEFF (H.) -   Grundlagen und Auswertung des Rönt-gen-Feinstruktur-Analyse.  -  1962 Oldenburg, München.

  • (4) - WILSON (A.J.C.) -   Mathematical theory of X-Ray powder diffractometry.  -  1963 Philips Technical Library, Eindhoven.

  • (5) - NUFFIELD (E.W.) -   X-Ray diffraction methods.  -  1966 John Wiley and Sons, New York.

  • (6) - KAELBLE (E.F.) -   Handbook of X-Rays.  -  1967 McGraw-Hill Book Company, New York.

  • (7)...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS