Article de référence | Réf : P150 v1

Capteurs optoélectrochimiques
Miniaturisation des capteurs : enjeux et perspectives

Auteur(s) : Neso SOJIC, Alexander KUHN

Date de publication : 10 août 2012

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les capteurs sont devenus indispensables pour de nombreux aspects de notre vie, avec des exemples d'application allant de la sécurité jusqu'au domaine de la santé. La miniaturisation de ces systèmes analytiques répond de manière générale à des besoins multiples dans l'ensemble des domaines de l'activité humaine, comme la détection in situ et/ou in vivo, la réduction de coût ou encore la rapidité de l'analyse. De même, le traitement d'échantillons de très petite taille ou de très faible volume permet ainsi un monitoring et un contrôle de paramètres physico-chimiques et biologiques. Dans le contexte des demandes sociétales de plus en plus exigeantes, sont illustrés dans cet article les défis pour ce domaine de recherche dans les prochaines années. Un accent particulier est porté sur les systèmes électrochimiques, optiques et optoélectrochimiques qui sont assez facilement miniaturisables.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Sensors have become crucial for many aspects of our lives with applications ranging from security issues to public health. The miniaturization of analytical systems satisfies in general multiple needs such as in situ and/or in vivo-detection, cost reduction, high throughput and handling of small size or volume samples, thus allowing the monitoring and the control of physico-chemical and biological parameters in the whole area of human activity. In the context of the ever increasing social demand we will illustrate, with the help of a few examples, the challenges for this field of research over the next few years with a special emphasis on electrochemical, optical and opto-electrochemical systems, which are easily to miniaturize.

Auteur(s)

  • Neso SOJIC : Institut des sciences moléculaires, CNRS UMR 5255, site ENSCBP (Pessac)

  • Alexander KUHN : Institut des sciences moléculaires, CNRS UMR 5255, site ENSCBP (Pessac)

INTRODUCTION

La miniaturisation de capteurs répond de manière générale à des besoins multiples comme la détection in situ et/ou in vivo, la parallèlisation, la réduction de coût, la rapidité de l'analyse et le traitement d'échantillons de très petite taille ou de très faible volume, permettant ainsi un monitoring et un contrôle de paramètres physico-chimiques et biologiques dans l'ensemble des domaines de l'activité humaine . Cela nécessite la mise au point de (bio)capteurs performants, parfois miniaturisés jusqu'aux limites imposées par la physique. Les activités de recherche dans ce dernier domaine visent à combiner les nanotechnologies, les nanomatériaux et les sciences biologiques afin de développer des capteurs, avec une sensibilité et une stabilité accrues, suffisamment bien adaptés pour des mesures rapides et en continu. Dans le cas idéal, il est souhaitable de maîtriser la structure interfaciale de ces capteurs à plusieurs échelles afin de profiter des effets de synergie. Nous allons illustrer cette démarche au travers de travaux basés sur des capteurs bioélectrochimiques, optiques et opto-électrochimiques développés au sein de notre groupe de recherche .

Cet article est extrait de la revue « Annales des falsifications, de l'expertise chimique et toxicologique » éditée par la SECF (Société des experts chimistes de France).

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

miniaturization   |   electrochemical sensors   |   optical sensors   |   opto-electrochemical sensors   |   electrochemistry   |   optics   |   opto-electrochemistry

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-p150


Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

3. Capteurs optoélectrochimiques

3.1 Microréseau pour l'immunodosage par électrochimiluminescence

L'électrochimiluminescence (ECL) est une forme bien contrôlée de chimiluminescence où l'émission lumineuse d'un luminophore résulte d'une réaction initiale de nature électrochimique . La génération de lumière ne nécessite aucune source lumineuse externe, mais nécessite d'imposer un potentiel adéquat à une électrode. Le luminophore utilisé classiquement est un complexe de ruthénium de type ou un de ses dérivés. Ce complexe de ruthénium est ainsi mis en œuvre comme marqueur dans de nombreuses applications commerciales, développées par Roche Diagnostics et Mesoscale Diagnostics, particulièrement dans le domaine de l'immunodosage.

Dans une étude de faisabilité, nous avons développé avec cette technologie une plate-forme analytique basée sur des billes encodées permettant l'immunodosage simultané de trois antigènes . Le microréseau est formé de billes de 3,1 μm de diamètre immobilisées dans des cavités optiques dorées qui servent de matériau d'électrode pour induire la réaction ECL (figure 5). La surface des billes a été fonctionnalisée avec des anticorps différents (VEGF, IL-8 et TIMP-1). Ces billes ont été préalablement encodées avec des concentrations différentes d'europium, permettant ainsi de les différencier. Les trois types de billes se sont autoarrangés dans le réseau de cavités optiques, obtenu par attaque chimique contrôlée d'un faisceau de fibres optiques. Le microréseau est ensuite incubé dans une solution contenant les antigènes puis avec une solution contenant un second anticorps...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Capteurs optoélectrochimiques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   La chimie analytique : mesure et société.  -  Rapport Science et Technologie (RST), no 6, Académie des Sciences (2000).

  • (2) -   *  -  http://www.enscbp.fr/nsysa/.

  • (3) - GONDRAN (C.), FABRY (P.) -   Capteurs électrochimiques.  -  Ellipses (2008).

  • (4) - MARINESCO (S.), PERNOT (P.) -   Biocapteurs implantables in vivo.  -  [RE 108] Techniques de l'Ingénieur (2008).

  • (5) - MANO (N.), THIENPONT (A.), KUHN (A.) -   *  -  Electrochem. Comm., 10, p. 585 (2001).

  • (6) - MANO (N.), KUHN (A.) -   *  -  Biosensors and Bioelectronics, 16, p. 45 (2001).

  • (7) - TOH...

DANS NOS BASES DOCUMENTAIRES

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Instrumentation et méthodes de mesure

(50 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS