Présentation

Article

Article de référence | Réf : P3312 v1

De l'échantillon biologique aux protéines
Analyse des protéines ou protéomique

Auteur(s) : Alexia ORTIZ, Caroline TOKARSKI, Christian ROLANDO

Date de publication : 10 sept. 2011

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

La protéomique est une science récente qui étudie les protéines, elle donne ainsi accès à l’expression génique d’une cellule, d’un tissu ou d’un organe, grâce à l'étude des protéines et de leurs modifications post-traductionnelles. Une analyse protéomique débute par l’extraction des protéines à partir de la matrice biologique, les conditions de cette préparation de l’échantillon, notamment le choix des agents de solubilisation, sont déterminantes. Les protéines sont ensuite séparées et purifiées par électrophorèse bidimensionnelle, puis leur analyse réalisée par spectrométrie de masse. Ces étapes sont généralement suivies de l’identification des protéines et de leur quantification par méthode différentielle ou absolue.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Alexia ORTIZ : Miniaturisation pour l'analyse, la synthèse et la protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et technologies, Villeneuve d'Ascq

  • Caroline TOKARSKI : Miniaturisation pour l'analyse, la synthèse et la protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et Technologies, Villeneuve d'Ascq

  • Christian ROLANDO : Miniaturisation pour l'analyse, la synthèse et la protéomique (MSAP), USR CNRS 3290, Université de Lille 1 Sciences et technologies, Villeneuve d'Ascq

INTRODUCTION

La protéomique est une science récente qui étudie les protéines. Le terme « protéome », proposé en 1995  , désigne l'ensemble des protéines exprimées par le génome d'une cellule, d'un tissu ou encore d'un organe à un moment précis de son développement.

Même si le séquençage du génome humain est aujourd'hui achevé, l'étude du génome comporte des limites. Sa connaissance ne permet pas d'appréhender la complexité du fonctionnement cellulaire. Un même génome conduit à l'expression de plusieurs protéomes en fonction des étapes du cycle cellulaire, de l'état physiopathologique de la cellule. Enfin, les protéines peuvent subir de nombreuses modifications indépendamment de la seule expression du gène codant. L'analyse protéomique permet donc une description dynamique de la régulation de l'expression génique, grâce à l'étude des protéines et de leurs modifications post-traductionnelles.

L'analyse protéomique trouve deux champs d'applications : d'une part, l'identification des protéines pour un organisme donné (localisation intracellulaire, interactions protéine-protéine) et, d'autre part, la connaissance des niveaux d'expression des protéines et des effets d'agents extérieurs (pathologies, traitements médicamenteux, facteurs environnementaux, etc.).

L'analyse protéomique repose principalement sur une méthodologie couplant l'électrophorèse bidimensionnelle (2D-PAGE), technique possédant un pouvoir résolutif très élevé, et la spectrométrie de masse. Une analyse protéomique classique peut ainsi se résumer par :

  • extraction des protéines à partir d'un matériel biologique donné ;

  • séparation des protéines par électrophorèse ;

  • analyse de ces protéines par spectrométrie de masse.

Outre ces trois étapes, nous compléterons cette présentation par une description du traitement des données (interrogation de banques de données pour l'identification des protéines et/ou de leurs modifications), une introduction aux approches protéomiques basées sur des techniques alternatives, et pour finier sur les différentes approches d'une étude protéomique ainsi que les différentes techniques de quantification des protéines.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-p3312


Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

1. De l'échantillon biologique aux protéines

1.1 Extraction et solubilisation

Quelle que soit l'étude protéomique à réaliser, la préparation de l'échantillon est de loin l'étape qui conditionne toute l'analyse. En effet, toutes les protéines de l'échantillon doivent être non seulement extraites mais également solubles, sans leur partenaire d'interaction (protéine/ADN, protéine/ARN, métabolite, etc.). De plus, dans le cadre de l'électrophorèse bidimensionnelle, les protéines doivent demeurer solubles au voisinage de leur point isoélectrique (pI). Il est par ailleurs évident que l'extraction et la solubilisation doivent être reproductibles. Il existe plusieurs approches décrites dans la littérature  . Des kits de solubilisation sont commercialisés. Toutefois, étant donné le degré d'hétérogénéité entre l'origine des échantillons (levures, bactéries, tissus, sérum, plantes), il n'existe pas de protocole universel. C'est pourquoi, les conditions d'extraction et de solubilisation doivent systématiquement être optimisées.

Pour extraire et solubiliser les protéines, plusieurs facteurs sont à prendre en compte : durée, température, pH, concentration protéique de l'échantillon, sels utilisés…

Les agents de solubilisation utilisés doivent être...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
De l'échantillon biologique aux protéines
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - KAHN (P.) -   *  -  Science, 20, p. 369-370 (1995).

  • (2) - WILKINS (M.R.), SANCHEZ (J.C.), GOOLEY (A.A.), APPEL (R.D.), HUMPHERY-SMITH (I.), HOCHSTRASSER (D.F.), WILLIAMS (K.L.) -   *  -  Biotechnology and Genetic Engineering Reviews, 13, p 19-50 (1995).

  • (3) - HERBERT (B.) -   Electrophoresis.  -  20, p. 660-663 (1999).

  • (4) - MOLLOY (M.P.) -   *  -  Analytical Biochemistry, 280, p. 1-10 (2000).

  • (5) - RABILLOUD (T.) -   Electrophoresis.  -  19, p. 758-760 (1998).

  • (6) - RABILLOUD (T.), BLISNICK (T.), HELLER (M.), LUCHE (S.), AEBERSOLD (R.), LUNARDI (J.), BRAUN-BRETON (C.) -   Electrophoresis.  -  20, p. 3603-3610 (1999).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS