Présentation

Article

1 - EXEMPLES DE SYSTÈMES DE PROPULSION AÉRONAUTIQUE OU SPATIALE

2 - CONCEVOIR UN SYSTÈME DE PROPULSION AÉRONAUTIQUE OU SPATIAL

3 - NOTATIONS ET PRINCIPALES GRANDEURS USUELLES

4 - CLASSIFICATION DE DIFFÉRENTS PROPULSEURS

5 - DÉVELOPPEMENT INDUSTRIEL ET TENDANCES ACTUELLES

6 - CONCLUSION

Article de référence | Réf : BM3000 v2

Notations et principales grandeurs usuelles
Propulsion aérospatiale - Introduction

Auteur(s) : Marc BOUCHEZ

Date de publication : 10 oct. 2018

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les systèmes de propulsion aérospatiaux (avions, fusées, missiles, sondes, satellites...) sont généralement de deux types : les réacteurs et les propulseurs à hélice. Les réacteurs fonctionnent grâce à l'expulsion à grande vitesse du produit de la combustion d'ergol, tandis que les autres utilisent le brassage d'un débit important de l'air ambiant (au moyen d'hélices, par exemple). Cet article présente différentes catégories de propulseurs et définit les principales grandeurs utilisées dans le domaine de la propulsion, par exemple l'impulsion spécifique ou l'indice constructif. Les grandes tendances industrielles sont également évoquées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Aerospace propulsion - an introduction

Aerospace propulsion systems (aircraft, space launchers, missiles, probes, satellites, etc.) are mostly of two types; reactors and propellers. This article presents several categories of propulsion systems and defines the main quantities used in the domain of the propulsion, such as specific impulse and constructive index. The main industriel trends are also presented.

Auteur(s)

  • Marc BOUCHEZ : Diplômé de l’École catholique d’arts et métiers de Lyon et de l’École supérieure des techniques aérospatiales - Professeur vacataire de propulsion dans plusieurs universités et grandes écoles - Membre émérite de l’Association Aéronautique et Astronautique de France - Ingénieur au département  « Flight Engineering & Propulsion » de MBDA, - Bourges, France

INTRODUCTION

Les articles [BM 3 000], [BM 3 001], [BM 3 002] et [BM 3 003] se veulent une introduction aux systèmes propulsifs d’avions, fusées, missiles, sondes, satellites… Le présent article, premier de la série, fournit le minimum indispensable sur le sujet.

Les articles suivants permettent de rappeler les notions essentielles du vol, les formules d’aérodynamique et de thermodynamique utilisées en propulsion, au stade avant-projet, ainsi que les différents niveaux de modélisation, les lois de conception simplifiées pour une croisière, une accélération, un vol balistique initialement propulsé.

Un intérêt particulier est porté dans cet article au lien avec la conception du véhicule volant dont on veut étudier la propulsion et aux ordres de grandeur des paramètres liés à un niveau donné de technologie.

Les exemples et les données fournis sont tirés de la littérature ouverte, parfois volontairement laissés en langue anglaise, les applications de ces moteurs conduisant forcément à des restrictions sur certains points particuliers des systèmes propulsifs d’un point de vue commercial ou militaire.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

reactor   |   propulsion systems   |   propeller

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-bm3000


Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(174 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

3. Notations et principales grandeurs usuelles

3.1 Unités de mesure SI et anglo-saxonnes

Les unités le plus souvent utilisées dans cet article sont celles du système international (SI). Une vitesse s’exprime en mètre par seconde (m.s−1), une pression en pascal (Pa), voire en bar (1 bar = 105 Pa) ou en MPa. Les grandeurs thermodynamiques des fluides intervenant dans la propulsion mettant en jeu le joule (J) ou le watt (W), par exemple les capacités thermiques massiques (cp, cV, et par extension r), sont en J.kg−1.K−1. Les températures sont exprimées en kelvin (K).

Les principales unités anglo-saxonnes encore utilisées dans les articles et les ouvrages de propulsion sont rappelées ci-dessous :

  • pour la pression, 1 psi (pound per square inch : livre-force par pouce carré) correspond à 6 897 Pa (c’est pour cela que certaines pressions de référence pour les propergols sont données pour 70 bar. De même, 1 psf (pound per square foot : livre-force par pied carré) correspond à 47,89 Pa ;

  • pour les longueurs, le pouce fait 25,4 mm, le pied 304,8 mm (et non pas 333 mm) et le mile (marin ou nautique, utilisé en propulsion aérospatiale) vaut 1 852 m.

La livre britannique (lb ou lbm) vaut 0,4535 kg tandis que le gallon américain équivaut à 0,003785 m3.

Une BTU (British Thermal Unit) vaut 1 055 J.

HAUT DE PAGE

3.2 Notations employées

Les notations utilisées seront celles que les spécialistes des différents types de propulsion emploient couramment en France. Elles ne sont cependant pas unifiées d’un type à l’autre, comme le montrent les exemples du tableau 1 (les paramètres de la 1re colonne ont une signification différente suivant le type de moteur des autres colonnes).

Le même mot ou la même expression peut désigner des grandeurs totalement différentes : la « vitesse caractéristique » peut caractériser l’énergie d’un couple d’ergols (c*) ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(174 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Notations et principales grandeurs usuelles
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - COLLECTIF, sous la direction de, JENSEN (G.E.), NETZER (D.W.) -   Tactical Missile Propulsion.  -  Progress in Astronautics and Aeronau- tics, vol. 170, AIAA (1996).

  • (2) - COMMISSION TECHNIQUE PROPULSION 3AF -   Propulsion spatiale 2015-2050.  -  Document technique de référence édité par l’Association Aéronautique et Astronautique de France (2013).

  • (3) - HILL (P.), PETERSON (C.) -   Mechanics and Thermodynamics of Propulsion.  -  Addison &Wesley ed. (1992).

  • (4) - DAVENAS (A.) -   Technologie des propergols solides.  -  Éd. Masson (1989).

  • (5) - SUTTON (G.P.), BIBLARZ (O.) -   Rocket Propulsion Elements – Seventh Edition.  -  A Wiley-lnterscience Publication ISBN 0-471-32642-9 (2001).

  • (6) - ANDERSON (J.D.) Jr. -   Introduction...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(174 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS