Présentation

Article

1 - CLASSIFICATION DES ACIERS INOXYDABLES

2 - ACIERS INOXYDABLES MARTENSITIQUES

3 - ACIERS INOXYDABLES FERRITIQUES

4 - ACIERS INOXYDABLES AUSTÉNO-FERRITIQUES

5 - ACIERS AUSTÉNITIQUES

6 - FINITION DE SURFACE DES CONSTRUCTIONS CHAUDRONNÉES

  • 6.1 - Dégraissage
  • 6.2 - Réparations de surface
  • 6.3 - Décapage intermédiaire ou final

7 - RÉSISTANCE À LA CORROSION DES APPAREILS CHAUDRONNÉS

  • 7.1 - Effet de l’écrouissage
  • 7.2 - Effets géométriques
  • 7.3 - Sensibilisation à la corrosion intercristalline
  • 7.4 - Effets galvaniques
  • 7.5 - Effet de l’état de surface
  • 7.6 - Suralliage du métal déposé
  • 7.7 - Essais de corrosion

8 - EAUX DE LAVAGE ET D’ÉPREUVE

9 - RECHARGEMENT, SOUDAGE HÉTÉROGÈNE ET SOUDAGE DES TÔLES PLAQUÉES

10 -  ASSEMBLAGE DES TUBES   SUR LES PLAQUES TUBULAIRES

Article de référence | Réf : BM6570 v1

Finition de surface des constructions chaudronnées
Chaudronnerie en aciers inoxydables

Auteur(s) : Pierre SOULIGNAC, Bernard BONNEFOIS, Etienne SOUTIF

Date de publication : 10 juil. 2007

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

La résistance à la corrosion, propriété principale des aciers inoxydables, en fait un matériau de choix pour la chaudronnerie. Une classification des aciers inoxydables est proposée dans cet article : notions de base, diagrammes de structure et états de surface. Les aciers inoxydables martensitiques, ferritiques, austéno-ferritiques et austénitiques sont ensuite détaillés par type à travers leurs compositions, propriétés, traitements, formages, etc. La connaissance des propriétés et des comportements de l'acier inoxydable en jeu permet d'adapter les méthodes de mise en oeuvre industriels appropriés à l'utilisation finale (exemple: le soudage des tôles plaquées ou encore l'assemblage des tubes sur les plaques tubulaires).

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Due to its resistance to corrosion, its main property, stainless steel is a material of choice for steel metal work. A classification of stainless steels is proposed in this article: basic notions, structure diagrams and surface states. Martensitic, ferritic, ferritic-austenitic and austenitic stainless steels are then detailed by type through their composition, properties, treatments, forming, etc. The sound knowledge of the properties and behaviors of the stainless steel involved allows for adapting the industrial implementation methods to the end use (e.g. clad plates welding or assembly of tubes on tubular plates).

Auteur(s)

INTRODUCTION

La propriété principale qui définit les aciers inoxydables est leur résistance à la corrosion qui en fait des matériaux de choix pour les industries de la chimie, de la pétrochimie, de la pâte et du papier, de la production d’énergie, de l’agroalimentaire, de l’eau, de la construction et du génie civil. Cette résistance à la corrosion est liée à leur teneur élevée en chrome (de 10 à 30 %) et renforcée par des additions de molybdène (jusqu’à 7 %) et d’autres éléments d’alliage comme le tungstène, le cuivre, le nickel, l’azote… Le nickel et l’azote sont utilisés pour renforcer la structure des aciers inoxydables austénitiques car ils jouent souvent un rôle positif sur leur tenue à la corrosion, à la différence du carbone.

La présence à la surface des aciers inoxydables d’une « couche passive » superficielle, gage de leur bonne tenue en service, implique la nécessité de conserver – ou éventuellement reconstituer – lors des opérations de chaudronnerie l’état de surface adapté aux conditions de service des appareils ou équipements.

Pour choisir et utiliser les méthodes de mise en œuvre les plus adaptées à chaque acier inoxydable (il en existe une centaine), il est indispensable de connaître ses propriétés et son comportement à la mise en œuvre, qui sont en première approximation liés à sa famille d’appartenance.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bm6570


Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(173 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

6. Finition de surface des constructions chaudronnées

6.1 Dégraissage

Cette opération est destinée à éviter le risque de recarburation superficielle sur les pièces qui doivent être chauffées (zones à souder, pièces avant formage à chaud ou traitement thermique). Il faut utiliser des solvants sans chlore.

HAUT DE PAGE

6.2 Réparations de surface

Les rayures ou indentations formées lors des opérations de soudage ne sont acceptables que si elles ne présentent pas de repli (en creux) ou d’angle vif. Un polissage à la bande ou à la meule (grain 120 minimum) suffit normalement à les éliminer.

HAUT DE PAGE

6.3 Décapage intermédiaire ou final

Il permet d’éliminer toutes les traces d’oxydation formées par soudage ou par chauffage. Cette opération est souvent réalisée en deux temps dans les cas difficiles :

  • sablage ou grenaillage pour fissurer la couche d’oxyde et accélérer le processus de décapage chimique ;

  • décapage chimique qui utilise généralement un mélange d’acide nitrique (10 % vol.) et fluorhydrique (2 % vol.), utilisé plusieurs heures à l’ambiante ou quelques dizaines de minutes vers 50 à 60 ˚C. On peut aussi utiliser des pâtes de décapage de composition adaptée à chaque famille de produits ;

  • décapage électrolytique au tampon qui donne d’excellents résultats.

Le décapage constitue en soi une décontamination de la surface. Il doit être suivi d’un brossage destiné à éliminer les particules d’oxydes (et éviter toute redéposition sur les surfaces décapées) et d’un rinçage à l’eau propre.

Après séchage, les surfaces reconstituent à l’air la couche passive en quelques heures, opération qui peut être accélérée par un traitement dit de « passivation » (à l’acide nitrique 25 % vol.), utilisé en particulier lorsque le décalaminage se limite à une opération de sablage ou grenaillage (pour éliminer les résidus de particules ferreuses).

...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(173 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Finition de surface des constructions chaudronnées
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MOIRON (J.L.), BONNEFOIS (B.), CUNAT (P.J.) -   Souder les aciers inoxydables.  -  OTLIA, Sirpe (2000).

  • (2) - LACOMBE (P.), BAROUX (B.), BÉRANGER (G.) -   Les aciers inoxydables.  -  Éditions de Physique (1990).

  • (3) - VARRIOT (J.) -   Les aciers inoxydables. Mise en œuvre et soudage.  -  Ouvrage republié dans la revue Souder, 23, no 6 (novembre 1999) et 24, no 1 à 3 (janvier, mars et mai 2000), Publications du soudage et ses applications.

  • (4) -   *  -  Document no 1196-92, commission II, International Institute of Welding (1992).

  • (5) - KOZLOWSKI (A.) -   Données numériques sur les aciers inoxydables.  -  [M 323], Étude et propriétés des métaux (1997).

  • (6) - SASSOULAS (H.) -   Traitements thermiques des aciers inoxydables.  -  [M 1 155], Étude...

NORMES

  • Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count - ASTM E 562 - 2002

  • Standard Practice for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels - ASTM A 262 - 2002

  • Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution - ASTM G 48 - 2003

  • Boiler and pressure code, section VIII, divisions 1 et 2. - ASME - 2005

1 Réglementation

Directive 97/23CE du Parlement européen et du Conseil du 29 mai 1997 relative au rapprochement des législations des États membres concernant les équipements sous pression, dite directive Équipements sous pression (DESP), JO L181 du 9 juillet 1997.

HAUT DE PAGE

2 Organismes

Numéros UNS (unified numbering system for metals and alloys)

http://www.matweb.com/search/SearchUNS.asp

Centre technique des industries mécaniques (Cetim)

http://www.cetim.fr

Syndicat national de la chaudronnerie, de la tôlerie et de la tuyauterie industrielle (SNCT)

http://www.snct.org

Institut de développement de l’inox (ID Inox)

https://www.ecolechezsoi.com/ecole/partenariat/id-inox.html

Euro Inox, The European Stainless Steel Development Association

http://www.euro-inox.org

ASTM International

http://www.astm.org

Tubular Exchanger Manufacturers Association (TEMA)

http://www.tema.org

American Welding Society (AWS)

http://www.aws.org

American Society of Mechanical Engineers (ASME)

http://www.asme.org

Association française...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Machines hydrauliques, aérodynamiques et thermiques

(173 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS