Présentation
En anglaisRÉSUMÉ
La fabrication optique couvre de grands domaines et permet d'obtenir une multitude de fonctions optiques notamment les fonctions réflectives et réfractives. Ces dernières années, de nouvelles technologies dans la réalisation du composant optique ont vu le jour, parmi elles les techniques d’usinage et de polissage. Une description et une classification de ces procédés et de leurs performances permettent d’en faciliter le choix. Se pose ensuite la question de la métrologie à mettre en œuvre lors du déroulement de ces opérations. Au final, sont listées leurs nombreuses applications actuelles dans les sociétés optiques en prenant en compte les critères industriels. La demande toujours plus forte dans des surfaces plus précises et plus complexes oblige malgré tout ces nouvelles technologies à d’autres développements.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Optical manufacturing covers a large domain and provides a host of optical features including reflective and refractive functions. In recent years, new technologies in the realization of optical components have emerged, among them machining and polishing techniques. A description and classification of these processes and their performance can facilitate the choice. Subsequently there is the issue of metrology to be implemented during the course of these operations. Ultimately, their numerous current applications in optical companies are listed, taking into account industrial requirements. The ever increasing demand for more specific and complex surfaces, despite all these new technologies, forces further developments.
Auteur(s)
-
François LEPRÊTRE : Ingénieur Process Optique Thales Angénieux
INTRODUCTION
La fabrication optique couvre de grands domaines et permet d'obtenir une multitude de fonctions optiques :
-
fonctions réflectives : la lumière se réfléchit sur une surface optique ;
-
fonctions réfractives : la lumière traverse une surface optique ;
-
fonctions diffractives : la lumière est diffractée par une surface optique.
Nous nous limiterons dans cet article à étudier principalement les nouvelles technologies de réalisation des composants optiques associés aux fonctions réflectives et réfractives.
Un composant optique simple comporte plusieurs aspects :
-
une matière optique approvisionnée auprès des grands verriers du monde : Schott, Ohara, Hoya, Hikari, CDGM. La qualité de cette matière est un enjeu important pour les composants réfractifs et limite de plus en plus souvent ses performances. Pour les composants réflectifs, la matière sert de « support » à la fonction optique et assure une fonction mécanique importante ;
-
des surfaces actives pour les composants réfractifs, une seule pour les composants réflectifs ;
-
chacune des surfaces a une forme géométrique qui peut être plane, cylindrique, sphérique, asphérique ou de non-révolution (free form). Ces surfaces sont ébauchées puis polies et leurs formes finales garantissent la performance optique du composant. La forme extérieure est ensuite usinée ;
-
pour améliorer les performances optiques ou spectrales du composant, un traitement couche mince est déposé sur les surfaces : antireflet, dichroïque, réfléchissant, polariseur, séparateur ;
-
pour améliorer les performances de lumière parasite, il peut être nécessaire de déposer un vernis noir sur les tranches des composants ou sur une partie de la surface.
De nouvelles technologies ont vu le jour ces vingt dernières années pour réaliser l'ensemble du composant optique et nous étudierons dans cet article les procédés modernes de fabrication des surfaces optiques (hors aspect traitement, collage et vernis). Après une revue indispensable des « grands classiques » de la technologie optique, toujours opérationnels en industrie et obligatoires dans certains cas, nous passerons en revue les différentes techniques d'usinage et de polissage. L'utilisation de ces technologies est possible ou non, en fonction du matériau, de la fonction géométrique souhaitée et du besoin en termes de précision. Nous continuerons par une revue de la métrologie nécessaire pour mettre en œuvre ces nouvelles technologies et nous terminerons par leur application dans l'industrie, les limitations actuelles et les axes de développements en cours.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Optique instrumentale > Réalisation de surfaces optiques de précision : procédés de fabrication > Comment sélectionner les technologies ?
Cet article fait partie de l’offre
Travail des matériaux - Assemblage
(175 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Comment sélectionner les technologies ?
3.1 Quelles technologies pour quels matériaux ?
Nous allons synthétiser dans ce paragraphe les utilisations possibles de chaque technologie en fonction du matériau de la surface à polir : verre, plastique, matériau infrarouge, matériau pour miroir.
Un échantillonnage « typique » mais non exhaustif de matériaux est sélectionné. Pour chacun de ces matériaux, il est indiqué dans le tableau 2 la technologie la plus adaptée, une technologie possible et les technologies non adaptées à l'heure actuelle.
HAUT DE PAGE3.2 Quelles technologies pour quelles surfaces ?
Nous avons décrit de nombreuses technologies de réalisation de surfaces optiques, certaines sont adaptées pour tel ou tel type de surface (plan, sphère, cylindre, asphérique, free form, diffractif), d'autres ne peuvent pas les faire ou bien difficilement.
Le tableau 3 présente une synthèse. Il n'est pris en compte que le critère typologie de surface. En utilisant ensuite le tableau 2, nous pouvons faire une présélection de la technologie souhaitée pour un matériau et une typologie de surface donnée.
HAUT DE PAGE3.3 Quelles technologies pour quelles performances ?
Pour terminer cette revue des technologies et leur classification, les performances réalisables par chacune d'elles sont résumées dans le tableau 4.
En fonction du diamètre de la pièce, des performances de planéité recherchées et de la rugosité visée, un premier choix entre les technologies peut être effectué. Une analyse plus fine est ensuite nécessaire, notamment sur l'impact du diamètre de la pièce et sur sa planéité en final.
HAUT DE PAGE3.4 Quelle métrologie associée à quelles technologies ?
La métrologie est de plus en plus indispensable : ce...
Cet article fait partie de l’offre
Travail des matériaux - Assemblage
(175 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Comment sélectionner les technologies ?
BIBLIOGRAPHIE
-
(1) - FANG (F.Z.), LIU (X.D.), LEE (L.C.) - Micro-machining of optical glasses – A review of diamond-cutting glasses. - Sadhana, vol. 28, part 5, oct. 2003.
-
(2) - BLACKLEY (W.S.), SCATTERGOOD (R.O.) - Ductile-regime machining model for diamond turning of brittle materials. - Precision Engineering, vol. 13, Issue 2, p. 95-103, avr. 1991.
-
(3) - BUHLER (S.), FUHRERL (J.), CHERVAZ (F.), MEIER (Ch.), OPPLIGER (C.), ROQUIER (F.), BAUME (P.) - Aspherical toroidal mirror fabricated by single-point diamond turning. - Hochschule für Technik und Informatique.
-
(4) - BHATTACHARYA (B.), PATTEN (J.A.), JACOB (J.) - Single point diamond turning of CVD coated silicon carbide. - Proceedings of MSEC2006, ASME International Conference on Manufacturing Science and Engineering, Ypsilanti, Michigan, 8-11 oct. 2006.
-
(5) - MARSH (E.R.), JOHN (B.P.), COUEY (J.A.), WANG (J.), GREJDA (R.D.), VALLANCE (R.R.) - Predicting surface figure in diamond turned calcium fluoride using in-process for measurement. - J. Vac. Sci. Technol. B, vol. 23, no 1, American Vacuum Society, janv-fév. 2005.
- ...
Cet article fait partie de l’offre
Travail des matériaux - Assemblage
(175 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive