Présentation

Article

1 - LE PERÇAGE : UN PROCÉDÉ COMPLEXE À MODÉLISER

2 - MODÉLISATION DES PHÉNOMÈNES THERMOMÉCANIQUES

3 - APPLICATIONS

4 - PERSPECTIVES

5 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : BM7043 v1

Applications
Modélisation numérique du procédé de perçage

Auteur(s) : Éric FEULVARCH, Kévin CHENEGRIN

Date de publication : 10 oct. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Le perçage fait partie des procédés les plus répandus dans l’industrie, mais il est aussi un des moins étudiés en raison de sa complexité géométrique et multiphysique. Pourtant, le perçage induit des contraintes résiduelles qui peuvent jouer un rôle majeur sur le comportement en service de matériaux à faible usinabilité.

Dans ce contexte, la simulation numérique apparaît comme un moyen privilégié pour mieux appréhender ces phénomènes. Au travers de différents exemples, cet article fait le point sur les méthodes numériques employées pour modéliser les phénomènes physiques mis en jeu en perçage, ainsi que les conséquences induites en termes de contraintes résiduelles.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Éric FEULVARCH : Professeur des universités - École Centrale de Lyon, Saint-Étienne, France

  • Kévin CHENEGRIN : Ingénieur-Docteur - Centre de développement exploratoire de Dassault Aviation, Mérignac, France

INTRODUCTION

Le perçage est un procédé d’usinage par enlèvement de matière largement mis en œuvre dans l’industrie en raison de sa robustesse et de sa bonne productivité. Ce procédé permet la réalisation de trous cylindriques dans un matériau solide à l’aide d’un outil coupant : le foret. Les trous percés étant souvent destinés à faciliter l’assemblage de diverses structures, le perçage fait partie des procédés les plus répandus dans de nombreux secteurs industriels de pointe (automobile, aéronautique et spatial, énergie, médical, etc.).

Malgré son omniprésence dans l’industrie, le perçage est un procédé complexe à étudier en raison de la forme cylindrique réalisée. En effet, les mécanismes de coupe ne sont pas directement observables puisqu’ils se produisent dans un environnement confiné durant toute la phase de perçage. Cette spécificité géométrique contribue à concentrer l’ensemble des phénomènes physiques dans un volume de matière restreint. C’est pour cette raison que le perçage est souvent considéré comme étant l’opération d’usinage la plus pénalisante pour l’outil et la matière.

Les applications de ce procédé portent essentiellement sur les métaux et leurs alliages, et en particulier ceux réputés « difficilement usinables » tels que les alliages de titane ou encore les superalliages à base nickel. Cette classe de matériaux permet d’atteindre un haut niveau de performance en termes de tenue mécanique. En revanche, leurs caractéristiques mécaniques et métallurgiques sont à l’origine de leur faible usinabilité, et imposent une importante surveillance des surfaces fonctionnelles usinées.

Malgré sa robustesse, le procédé de perçage induit des contraintes résiduelles souvent difficiles à appréhender. Elles peuvent affecter la qualité des trous percés en terme de tenue en fatigue. Dans un contexte industriel de plus en plus concurrentiel, les entreprises cherchent à optimiser les coûts et les délais de production, et en particulier ceux des pièces à très forte valeur ajoutée. C’est pourquoi la maîtrise des procédés de fabrication et des conséquences, qu’ils induisent sur des matériaux innovants, constitue un facteur de réussite primordial.

Dans ce contexte, la modélisation numérique du procédé de perçage apparaît comme un moyen privilégié pour mieux appréhender les conséquences mécaniques induites par les phénomènes mis en jeu à l’intérieur d’un trou percé. Au travers de différents exemples, l’objectif de cet article est de faire le point sur les méthodes de modélisation numérique employées dans le cadre du perçage. La première partie de l’article porte sur le procédé de perçage et les difficultés liées à sa modélisation multiphysique. Une seconde partie se focalise sur la modélisation des phénomènes thermomécaniques mis en jeu durant l’opération de perçage. Enfin, avant de conclure sur les perspectives de l’article, la troisième partie présente différents cas d’application, dont la modélisation des contraintes résiduelles induites par le procédé.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-bm7043


Cet article fait partie de l’offre

Travail des matériaux - Assemblage

(175 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

3. Applications

3.1 Simulation des transferts de chaleur lors du perçage d'un alliage de titane Ti-6Al-4V

Ce cas d’application porte sur le perçage d'un alliage de titane Ti-6Al-4V. Il s'agit de réaliser un trou débouchant de 10 mm de diamètre au centre d'une plaque de 9 mm d'épaisseur dont la géométrie est décrite sur la figure 16 . L'objectif est de déterminer la température maximale atteinte en extrême surface avec et sans lubrification de manière à mieux comprendre l'impact du procédé sur les évolutions microstructurales et les mécanismes d’apparition des contraintes résiduelles . In fine, l'intérêt est de pouvoir optimiser l'étape d’alésage qui s’en suit en évaluant l'épaisseur de matière affectée par le perçage en sous-surface.

Les paramètres de coupe sont regroupés dans le tableau 2. L’outil coupant utilisé est un foret en carbure monobloc KENNAMETAL de référence B051A10000CPG.

Afin de simuler l’évolution transitoire des transferts de chaleur en cours de perçage, la stratégie de simulation 3D détaillée dans le chapitre ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Travail des matériaux - Assemblage

(175 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Applications
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - DIETRICH (R.) et al -   Précis de méthodes d’usinage : méthodologie, production et normalisation.  -  5e édition. AFNOR – Nathan, Paris (2004).

  • (2) - CHENEGRIN (K.) -   Identification et modélisation des phénomènes thermomécaniques mis en jeu lors du perçage à sec de l’Inconel 718.  -  Thèse, Université de Lyon (2021).

  • (3) - LACOMBE (A.) -   Influence du procédé de perçage sur l’intégrité de surface et la tenue en fatigue de pièces percées en AA2024-T351.  -  Thèse, Université de Toulouse (2021).

  • (4) - LI (R.), SHIH (A.) -   Spiral point drill temperature and stress in high-throughput drilling of titanium.  -  International Journal of Machine Tools and Manufacture, 47(12-13) : p. 2005-2017 (2007).

  • (5) - HUANG (C.-H.) et al -   A three-dimensional inverse problem in estimating the applied heat flux of a titanium drilling – Theoretical and experimental studies.  -  International...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Travail des matériaux - Assemblage

(175 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS