Présentation
En anglaisAuteur(s)
-
Jean-François LAPRAY : Ingénieur de l’École Nationale Supérieure d’Hydraulique et de Mécanique de Grenoble (ENSHMG) - Chef du service technique hydraulique GEC-ALSTHOM BERGERON
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
La cavitation reste, aujourd’hui encore, un sujet de préoccupation majeure pour qui s’intéresse aux pompes rotodynamiques, qu’il soit utilisateur, installateur ou bien entendu constructeur. L’évolution rapide de l’industrie des pompes, les récents progrès réalisés dans l’étude et la compréhension des nombreux mécanismes qui régissent le phénomène de cavitation, rendent nécessaire la mise à jour des connaissances sur le sujet. Cet article a pour but de fournir au lecteur des explications et des éléments directement exploitables sur le plan pratique, tout en essayant de mettre en évidence la multiplicité et la complexité des nombreux éléments à prendre en compte.
Le coût d’une station de pompage est directement fonction de deux paramètres qui sont la vitesse de rotation des groupes de pompage retenus et le niveau du radier de la station eu égard au niveau minimal du fluide à pomper à l’aspiration. Ces deux paramètres font référence à la hauteur de charge nette à l’aspiration universellement dénommée Net Positive Suction Head ou NPSH : (NPSH)req de la pompe et (NPSH)disp lié à l’installation ; c’est dans la valeur de la marge de sécurité à prendre entre (NPSH)req et (NPSH)disp pour assurer à l’utilisateur un fonctionnement satisfaisant vis‐à‐vis de la cavitation que réside une part importante du coût de la station de pompage.
Une grande partie de l’article a pour objet de définir les divers aspects de la cavitation dans les pompes et de donner des indications pour calculer le (NPSH)disp lié aux installations. Ces définitions de base permettent de faire les choix techniques les plus judicieux.
Une petite partie a été consacrée au bruit généré par la cavitation, car ce sujet d’une extrême importance dans certaines applications sera traité dans un article plus général consacré au bruit des turbomachines. Il apparaît plus cohérent de regrouper tous les éléments consacrés au bruit, tant il est délicat de traiter séparément la part du bruit incombant à la cavitation des autres sources de bruit généré par les groupes motopompes.
Compte tenu de la pratique industrielle courante, le NPSH a été exprimé en mètres de colonne de liquide alors que, sur le plan scientifique, il eut été plus judicieux d’utiliser l’expression NPSE = g (NPSH), énergie massique d’aspiration (en J / kg).
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Zone de pression minimale dans une pompe
Considérons l’évolution de la pression moyenne dans une pompe (figure 2a ). La pression moyenne la plus faible, soit p 1 , règne évidemment à l’entrée de la roue, lorsqu’aucune énergie n’a encore été transmise au fluide. La pression p 1 n’est cependant pas la pression locale minimale dans la pompe. On sait en effet que, du fait de la transmission d’énergie par les aubes de la roue, les pressions évoluent différemment sur les deux faces de ces aubages et qu’en particulier, il existe une zone en forte dépression sur la face vue au voisinage du bord d’entrée. C’est au niveau de cette zone que se situe la pression minimale et que, par conséquent, il y a risque de voir naître la cavitation.
Considérons la figure 2b où est reproduite l’allure des variations de pression sur les deux faces d’une aube de roue comparée à celle de la pression moyenne régnant au sein d’un canal d’écoulement. Soit 1’ l’indice caractérisant la zone de pression minimale et p min cette pression. La formule de Bernoulli en mouvement relatif entre l’entrée du rotor et la zone de pression minimale s’écrit :
avec :
- g :
- accélération due à la pesanteur
- u :
- vitesse d’entraînement
- w :
- vitesse relative par rapport à la roue
- z :
- altitude
- ρ :
- masse volumique
- ΔH :
- perte de charge massique.
La zone de dépression étant située fort près de la section d’entrée, on peut sans inconvénient négliger les variations de u et gz ainsi que les pertes. En désignant par Δp la chute de pression d’entrée (p1 – p min), la relation précédente se réduit alors à :
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Zone de pression minimale dans une pompe
Cet article fait partie de l’offre
Machines hydrauliques, aérodynamiques et thermiques
(173 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive