Présentation

Article

1 - MOULE : UN ÉCHANGEUR DE CHALEUR

2 - COUPLAGE ENTRE LA PIÈCE ET LE MOULE

3 - TRANSFERTS COUPLÉS AU SEIN DE LA PIÈCE

4 - MODÈLE SIMPLIFIÉ POUR LE DIMENSIONNEMENT THERMIQUE DU MOULE

5 - DIMENSIONNEMENT THERMIQUE DU MOULE SUR LA BASE D’UN MODÈLE OPTIMAL

6 - CHOIX DU FLUIDE DE RÉGULATION

7 - MÉTROLOGIE THERMIQUE DANS UN MOULE D'INJECTION : LES CAPTEURS DE FLUX

8 - CONCLUSION

9 - GLOSSAIRE

Article de référence | Réf : AM3687 v1

Couplage entre la pièce et le moule
Optimisation thermique des outillages d’injection thermoplastique

Auteur(s) : Vincent SOBOTKA, Didier DELAUNAY, Ronan LEGOFF, Alban AGAZZI

Date de publication : 10 juin 2018

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article propose des méthodes de dimensionnement thermique des outillages d’injection thermoplastique. La puissance à fournir au moule est déterminée à partir d’une analyse des échanges de chaleur en régime moyen. Des modèles analytiques sont proposés et validés expérimentalement pour calculer le temps de refroidissement de pièces en polymères amorphes et semi-cristallins, en tenant compte d’une résistance thermique de contact entre pièce et outillage. Une conception optimale des canaux basée sur le concept de refroidissement conforme est proposée et validée sur des pièces industrielles. L’instrumentation thermique et les conditions de circulation du fluide caloporteur sont discutées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Thermal optimization of thermoplastic injection moulds

This article provides the mold designer with methods for the thermal design of thermoplastic injection tools. In a first step, the power to be supplied to the tool is determined from an analysis of the heat transfers in an average regime. Several analytical models are proposed and validated experimentally to calculate the cooling time of amorphous and semi-crystalline polymer parts, accounting for a thermal contact resistance between the part and the molding cavity surface. An optimal channel design strategy based on the conformal cooling concept is proposed and validated on industrial parts. The thermal instrumentation and the circulation conditions of the cooling fluid are discussed.

Auteur(s)

  • Vincent SOBOTKA : Professeur des Universités - Laboratoire de Thermique et Énergie de Nantes (LTeN) – UMR CNRS 6607, Nantes, France

  • Didier DELAUNAY : Directeur de Recherche CNRS - Laboratoire de Thermique et Énergie de Nantes (LTeN) – UMR CNRS 6607, Nantes, France

  • Ronan LEGOFF : Responsable de la Ligne Programme « Usine Numérique » - IPC Centre tec0hnique de la plasturgie et des composites, Bellignat, France

  • Alban AGAZZI : Responsable de la Cellule Numérique - PC Centre technique de la plasturgie et des composites, Bellignat, France

INTRODUCTION

Le procédé d’injection thermoplastique est un procédé cyclique permettant la mise en forme de pièces en polymère amorphe ou semi-cristallin, renforcé ou non. Ce procédé consiste à injecter le polymère à l’état « fondu » dans une cavité moulante thermorégulée dans laquelle la matière se solidifie tout en prenant sa forme finale. La minimisation du temps de refroidissement est une étape clé pour la rentabilité du procédé. Néanmoins, l’histoire thermique durant le refroidissement impacte directement la qualité de la pièce produite et doit donc être maîtrisée. Du point de vue du thermicien, le moule ou outillage peut être considéré comme un échangeur de chaleur en régime périodique, qu’il convient de dimensionner de façon à obtenir le refroidissement le plus uniforme possible dans le temps le plus faible. L’objectif est donc de déterminer, pour un temps de cycle minimal, la thermique de l’outillage permettant de minimiser les gradients thermiques surfaciques tout en atteignant un niveau de température dans la pièce permettant son éjection du moule. Cet article propose d’accompagner le concepteur d’outillage pour répondre à cette problématique.

La démarche consiste d’abord en une étude globale des échanges de chaleur en régime moyen afin de définir la puissance à fournir à l’outillage. Dans un deuxième temps, des modèles analytiques en une dimension permettent de calculer le temps de refroidissement de pièces en polymères amorphes et semi-cristallins. Ces modèles ne nécessitent pas l’utilisation de codes de calculs évolués et font appel à un nombre limité de paramètres. Ils intègrent un contact thermique pouvant être imparfait entre le polymère et la surface de la cavité moulante. Les résultats issus de ces modèles sont validés expérimentalement à partir d’essais réalisés sur une pièce « école » injectée dans un outillage instrumenté de capteurs de pression et de flux de chaleur.

Le temps de refroidissement obtenu pour le cas 1D est transposé au cas d’une pièce réelle 3D pour concevoir le système de régulation qui permette d’obtenir une bonne homogénéité thermique en surface de cavité moulante tout en respectant un temps minimal. Différentes stratégies d’optimisation sont proposées sans a priori sur la forme, le nombre, la position et la température des canaux de régulation du moule. Une validation expérimentale est proposée sur un cas industriel.

Finalement le choix du fluide de régulation est proposé de même que la métrologie en flux thermique à implanter dans un outillage d’injection thermoplastique.

L’objectif de cet article est d’accompagner l’ingénieur à déterminer de façon rapide et sans avoir recours à un code de calcul, le temps de refroidissement d’une pièce réalisée par le procédé d’injection thermoplastique et d’associer ainsi un coût à la production de cette pièce. Le concepteur devrait également être en mesure et réaliser un positionnement des canaux de régulation de façon optimale pour atteindre ce temps sur une pièce complexe.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

thermoplastics polymers   |   thermal design   |   thermal contact resistance   |   channel   |   moulds

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-am3687


Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

2. Couplage entre la pièce et le moule

Le positionnement des circuits de refroidissement dépend des propriétés thermiques de l’outillage, mais également de celles de la pièce à refroidir. La profondeur de pénétration, de même que la température de surface dépendent directement des propriétés du polymère ainsi que des conditions de mise en œuvre. L’évolution de la thermique de l’outillage ne peut être découplée de la thermique de la pièce pendant le cycle. Les figures 567 et 8 représentent les évolutions des températures de surface de l’outillage au cours d’un cycle, ainsi que les flux de chaleur et les pressions en cavité moulante enregistrés par les capteurs (figure 2 a) dans le moule modèle et pour deux matériaux injectés : un amorphe (Acrylonitrile Butadiène Styrène ABS 710 commercialisé par Kumho Petrochimical) et un semi-cristallin (polypropylène PP : ISPLEN 070 G2M commercialisé par Repsol).

Lors de l’injection, la température de surface de l’outillage augmente rapidement de même que le flux de chaleur. Les profils de température et de flux sont similaires pour les deux matières. En ce qui concerne la pression, celle-ci augmente très rapidement au moment de la commutation (aux alentours de 1 s après l’augmentation de pression) puisque l’on passe d’une commande en débit matière à un pilotage en pression. Cela permet de compenser les retraits lors de la phase de maintien. Ensuite selon que la matière injectée est amorphe ou semi-cristalline, « le transfert du maintien », qui désigne en termes de métier, la relation entre la pression en cavité moulante et la pression hydraulique de maintien se fait dans différentes conditions. Le gel du seuil plus tardif pour les semi-cristallins, à cause de la chaleur libérée lors de la cristallisation [équation ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Couplage entre la pièce et le moule
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - XU (H.), KAZMER (D.) -   A stiffness criterion for cooling time estimation.  -  IPP, vol. 14, N° 1, pp. 103-108 (1999).

  • (2) - DELAUNAY (D.), LE BOT (P.), FULCHIRON (R.), LUYÉ (J.-F.), RÉGNIER (G.) -   Nature of contact betwween polymer and mold. Part 1 : influence of a non-perfect thermal contact.  -  Polymer Engineering and Science, vol. 40, No. 7, pp. 1682-1691 (2000).

  • (3) - DELAUNAY (D.), LE BOT (P.), FULCHIRON (R.), LUYÉ (J.-F.), RÉGNIER (G.) -   Nature of contact betwween polymer and mold. Part 2 : influence of mold deflection on pressure history and shrinkage.  -  Polymer Engineering and Science, vol. 40, No. 7, pp. 1692, 1700 (2000).

  • (4) - BERGMAN (T.L.), LEVINE (A.S.), INCROPERA (F.P.), DEWITT (D.P.) -   Fundamentals of Heat and Mass Transfer.  -  7th Edition, John Wiley and Sons, Chapter 9, pp. 604-610 (2011).

  • (5) - MOUSSEAU (P.), SARDA (A.), DETERRE (R.) -   Thermique de l’injection des thermoplastiques. Optimisation.  -  Techniques...

1 Brevets

A. Agazzi, V. Sobotka, R. Le Goff, D. Garcia, and Y. Jarny, « Procédé MCOOL : Procédé pour former des canaux dans un outillage, outillage formé avec un tel procédé et produit, Programme d’ordinateur réalisant un tel procédé » FR 2976201, 2011.

HAUT DE PAGE

2 Outils logiciels

CADFlow

https://www.cadflow.fr

Moldex3D

http://www.moldex3d.com

Moldflow

https://www.autodesk.fr

REM3D

http://www.transvalor.com

Sigmasoft :

http://www.sigmasoft.de/

Solidworks Plastics

http://www.solidworks.fr

Visi Flow

http://www.visicfao.fr

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS