Présentation

Article

1 - CARACTÉRISATION ET REPRÉSENTATION DES ALLIAGES BIPHASÉS

2 - BORNES DU COMPORTEMENT RHÉOLOGIQUE

3 - ESTIMATIONS DU COMPORTEMENT RHÉOLOGIQUE

4 - PARAMÈTRES RHÉOLOGIQUES DE MATÉRIAUX BIPHASES

Article de référence | Réf : M3010 v2

Caractérisation et représentation des alliages biphasés
Comportement rhéologique des matériaux métalliques multiphasés

Auteur(s) : Frank MONTHEILLET

Relu et validé le 06 mars 2017

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les divers paramètres permettant de caractériser un matériau multiphasé sont passés en revue. Les bornes classiques du comportement mécanique sont décrites, puis les principales approches (essentiellement unidimensionnelles) permettant d'estimer ce comportement sont présentées, par ordre de complexité croissante : lois de mélange "simples", modèles utilisant la mécanique de l'inclusion d'Eshelby, calculs numériques (automates cellulaires, éléments finis). Enfin, certaines caractéristiques rhéologiques spécifiques aux agrégats biphasés sont analysées.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Frank MONTHEILLET : Directeur de recherche au CNRS - École nationale supérieure des mines de Saint-Étienne - Centre science des matériaux et des structures - CNRS UMR 5146

INTRODUCTION

Pourquoi s’intéresser au comportement des matériaux multiphasés ?

On remarquera tout d’abord que les matériaux réels sont toujours hétérogènes, à l’exception possible des monocristaux de haute pureté et non-déformés. Dans les matériaux monophasés, la densité de dislocations, la taille et l’orientation des grains sont distribuées de manière hétérogène. A fortiori, lorsque plusieurs phases sont présentes, la forme, la taille, l’orientation et les relations spatiales entre les domaines homogènes constituent autant de sources d’hétérogénéité. Or, les métaux présentent généralement à l’état pur des caractéristiques mécaniques (dureté, limite d’élasticité) insuffisantes, et sont donc le plus souvent utilisés sous la forme d’alliages. C’est ainsi que dès la protohistoire, les bronzes (alliages de cuivre et d’étain) et les laitons (alliages de cuivre et de zinc) ont remplacé le cuivre pur. Lorsqu’un élément est ajouté à un métal pur à l’état liquide, trois structures peuvent être observées après refroidissement du mélange :

  • soit une solution solide homogène (par exemple, pour Ni-Cu en toute proportion) ;

  • soit une matrice contenant une seconde phase minoritaire, constituée d’inclusions solidifiées avant la matrice, ou de précipités formés à l’état solide (par exemple, oxydes dans le cuivre, carbures dans le fer) ;

  • soit un mélange de deux ou de plusieurs phases de caractéristiques chimiques, géométriques et mécaniques distinctes, et dont les fractions volumiques sont du même ordre de grandeur.

On parle alors suivant les cas, d’alliage biphasé ou multiphasé. Certains matériaux hétérogènes obtenus par frittage, ainsi que certains composites, sans être des alliages à proprement parler, relèvent de la même catégorie de matériaux hétérogènes faisant l’objet de cet article.

Si les matériaux multiphasés apparaissent ainsi incontournables, il faut également souligner que la présence de plusieurs phases de propriétés différentes peut être bénéfique. La première idée élémentaire consiste à cumuler les qualités (et non les défauts) des deux phases. Ainsi le mélange d’une phase dure mais fragile (par exemple, le carbure de tungstène WC) et d’une phase ductile mais molle (par exemple, le cobalt) conduit à un compromis intéressant de dureté et de ductilité dans le composite WC-Co. Encore faut-il s’assurer que le mélange n’est pas à la fois fragile et mou. Mais l’intérêt pour le comportement des matériaux biphasés ne s’arrête pas là, comme le montrent les deux exemples suivants. Dans le cas des tôles en acier de construction, la nécessité d’accroître la limite d’élasticité par une réduction de la taille des grains amène les fabricants à terminer la gamme de laminage dans le domaine de “déformation à tiède”, c’est-à-dire suivant les cas dans le domaine ferrite + austénite, ou ferrite + cémentite. De même, les alliages de titane utilisés dans l’aéronautique présentent en général un comportement superplastique dans le domaine biphasé α + β (notamment au voisinage de la composition équivolumique), qui peut être mis à profit pour certaines opérations de mise en forme. Ces exemples montrent bien la nécessité et l’intérêt de maîtriser le comportement des matériaux multiphasés.

Précisons maintenant les problèmes qui seront examinés dans cet article.

Le premier concerne la détermination du comportement rhéologique global d’un matériau multiphasé : sa loi de comportement macroscopique, à partir du comportement supposé connu de ses éléments constitutifs et de leur agencement dans l’alliage. C’est un problème d’homogénéisation.

Le second problème concerne la détermination du comportement local du matériau : l'évolution de la forme des domaines homogènes et la distribution locale des déformations et des contraintes. C’est un problème de localisation, bien connu des mécaniciens.

Nous nous limiterons à la présentation de diverses approches issues de la mécanique des milieux continus appliquées à l’échelle des domaines homogènes, souvent qualifiée d’échelle mésoscopique. Les problèmes seront traités dans le cas particulier d’un matériau biphasé, l’extension à un nombre plus grand de phases pouvant généralement se faire sans difficulté.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-m3010


Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Caractérisation et représentation des alliages biphasés

La plupart des paramètres permettant de caractériser l’“architecture” d’un matériau multiphasé sont de nature géométrique. Ils sont donc en principe mesurables par les techniques classiques d’analyse d’image appliquées aux divers types d’observations métallographiques [M 90].

En fait, les modèles mécaniques classiques, présentés dans la suite, n’utilisent actuellement qu’une faible partie de la masse des données accessibles expérimentalement.

1.1 Fractions volumiques

Étant donné un mélange de 2 phases, ou plus généralement de 2 milieux homogènes (1) et (2), on notera f 1 et f 2 leurs fractions volumiques (f 1 + f 2 = 1), et l’on posera en général dans les calculs f 1 = f et f 2 = 1 − f. Le paramètre f constitue évidemment la caractéristique la plus élémentaire du matériau biphasé, bien qu’il soit important de noter que c’est très souvent le seul intervenant dans la modélisation du mélange. Rappelons ici que si les mesures sont effectuées sur une quantité (volume, surface, ligne ou point) de matériau, suffisamment grande pour être représentative de l’ensemble, les fractions :

  • volumique f V ;

  • surfacique f S ;

  • linéique f L ;

  • ponctuelle f P sont égales, quelles que soient la forme et la distribution des phases ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Caractérisation et représentation des alliages biphasés
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - DELESSE (A.) -   Procédé mécanique pour déterminer la composition des roches  -  Ann. Mines 13, p. 379-388 (1848).

  • (2) - CASTRO (R.), SERAPHIN (L.) -   Contribution à l’étude métallographique et structurale de l’alliage de titane TA6V  -  Mém. Sci. Rev. Métall. 63, p. 1025-1058 (1966).

  • (3) - GURLAND (J.) -   A structural approach to the yield strength of two-phase alloys with coarse microstructures  -  Mater. Sci. Eng. 40, p. 59-71 (1979).

  • (4) - CADET-MESSIAEN (L.) -   Recherche de paramètres morphologiques influents pour la prévision des caractéristiques mécaniques d’un acier austéno-ferritique  -  Thèse, École des mines de Saint-Étienne (1997).

  • (5) - MONTHEILLET (F.), BRIOTTET (L.) -   Modelling the effects of morphology and topology on strain inhomogeneity in two phase materials  -  Int. Conf. on the Quantitative Description of Materials Microstructure (Q-MAT’97), Varsovie, p. 37-48 (1997).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mise en forme des métaux et fonderie

(125 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS