Présentation

Article interactif

1 - DISLOCATIONS ET DÉFORMATION

2 - LIMITE D’ÉLASTICITÉ DES MÉTAUX PURS

3 - MÉCANISMES DE DURCISSEMENT

4 - DÉFORMATION PLASTIQUE ET ÉCROUISSAGE

5 - COMPORTEMENT DES ALLIAGES MULTIPHASÉS

6 - CONCLUSION

7 - GLOSSAIRE

8 - SYMBOLES

Article de référence | Réf : M4340 v2

Conclusion
Durcissement des alliages métalliques - Impact de la microstructure sur la déformation plastique

Auteur(s) : Jean-Hubert SCHMITT, Thierry IUNG

Relu et validé le 25 nov. 2020

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les microstructures des alliages métalliques sont directement influencées par leur composition chimique et les traitements thermomécaniques subis : solution solide interstitielle et substitutionnelle, précipitations multiples, secondes phases, constituants métastables… Chacun de ces éléments contribue au durcissement de ces alliages. Cet article rappelle les principaux mécanismes de déformation plastique (dislocations, maclage, transformation de phase induite) et décrit leur impact sur la limite d’élasticité et l’écrouissage. Des relations quantitatives permettent de prévoir les caractéristiques mécaniques des alliages métalliques quelques exemples sont présentés pour les aciers en fonction des éléments d’alliage et des paramètres microstructuraux.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Strengthening of metallic alloys Microstructure influence on plastic deformation

Microstructures of metal alloys depend on their chemical composition and imposed thermomechanical treatments: interstitial and substitutional solid solution, multiple precipitation, second phases, metastable constituents, etc. Each of these features contributes to the hardening of alloys. This article briefly reviews the main mechanisms of plastic deformation (dislocations, twinning, transformation-induced plasticity), and then describes their influence on yield stress and strain hardening. Quantitative relations are written as a function of alloying elements and microstructure parameters. Some examples are given for steels.

Auteur(s)

  • Jean-Hubert SCHMITT : Professeur des Universités - CentraleSupélec, Université Paris-Saclay, laboratoire MSSMat, UMR CNRS 8579, Châtenay-Malabry, France

  • Thierry IUNG : Manager / Metallurgy Expert MPM team - ArcelorMittal Global R&D, Maizières-lès-Metz, France

INTRODUCTION

Les alliages métalliques sont largement utilisés dans la construction mécanique. Les structures métalliques doivent le plus souvent rester indéformables sous les sollicitations d’utilisation. Il est donc important d’accroître la limite d’élasticité, afin d’améliorer la performance de la structure ou de pouvoir réduire le poids des différents éléments pour une même performance.

Parallèlement, les transformateurs ont besoin de métal pouvant être mis en forme aisément. Cette transformation impose un contrôle de l’écrouissage, en plus de celui de la limite d’élasticité.

Il apparaît ainsi essentiel d’étudier en détail les mécanismes physiques de déformation qui permettent d’ajuster au mieux les caractéristiques mécaniques en vue de leur utilisation. On se limite, dans cet article, au cas où la température de déformation et d’emploi est bien inférieure à la température de fusion, c’est-à-dire que l’on ne tient pas compte des mécanismes de diffusion.

Les principaux mécanismes de la déformation plastique ont pour origine le déplacement, sous contrainte, de dislocations qui sont des défauts linéaires dans les cristaux. Le durcissement d’un alliage métallique, autrement dit l’augmentation de sa limite d’élasticité, résulte d’obstacles au déplacement des dislocations sans l’entraver totalement afin d’éviter une fragilité inacceptable. Ces principaux obstacles sont :

  • d’autres dislocations qui interceptent le plan de glissement des dislocations mobiles (durcissement par écrouissage) ;

  • des atomes étrangers en insertion ou en substitution dans le réseau cristallin (durcissement par soluté) ;

  • des précipités de particules de deuxième phase dispersées dans les grains (durcissement structural) ;

  • des joints de grains et des interfaces entre les constituants majeurs de la microstructure.

Ces mécanismes sont généraux pour l’ensemble des métaux. En fonction de leur composition, certains alliages peuvent présenter des mécanismes complémentaires de durcissement. C’est en particulier le cas des aciers multiphasés ou des aciers duplex constitués d’une phase déformable, généralement la ferrite, et d’un constituant plus dur comme la martensite. Enfin, la déformation plastique peut aussi se produire par maclage ou induire la transformation de phase métastable (par exemple l’austénite dans le cas des aciers).

L’action de ces obstacles, seuls ou en combinaison, conduit à un éventail de mécanismes de durcissement dont la maîtrise s’est développée au fur et à mesure que les connaissances se sont affinées. Dans la suite, nous décrivons ces principaux mécanismes de durcissement des alliages métalliques et étudions leur impact sur la limite d’élasticité et l’écrouissage.

Ces différents mécanismes sont largement utilisés pour le durcissement des aciers et le développement de nouvelles nuances combinant un durcissement élevé avec une ductilité importante. Les articles [M 4 341] et [M 4 342] en exposent plusieurs exemples pour les aciers ferritiques, austénitiques et biphasés.

Un glossaire et un tableau de symboles sont présentés en fin d'article.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

dislocations   |   manufacturing process   |   forming   |   plastic deformation   |   yield stress   |   strain hardening

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-m4340


Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

6. Conclusion

Nous avons vu dans cet article comment la composition chimique et la microstructure interagissent avec les modes de déformation pour durcir les alliages. Le tableau 3 récapitule les principaux mécanismes en rappelant les ordres de grandeur des contraintes critiques associées.

Dans la plupart des cas pratiques, plusieurs mécanismes contribuent simultanément à la résistance mécanique du métal. Nous avons vu qu’ils agissent sur la contrainte d’écoulement et, fréquemment, sur la consolidation. Ainsi, il est possible de proposer une forme complète du comportement  :

( 27 )

avec :

K
 : 
coefficient de Hall-Petch,
M
 : 
facteur de Taylor,
G
 : 
module élastique de cisaillement,
σss
 : 
contribution de la solution solide à la limite d'élasticité,
σp
 : 
contribution des pécipités à la limite d'élasticité,
ρ
 : 
densité de dislocation,
b
 : 
module de Burgers,
D
 : 
diamètre moyen des grains.

Cette équation est complétée par une relation donnant l’évolution de la densité de dislocations ρ en fonction de la déformation ε. Cette évolution est écrite en fonction de l’état de déformation, représenté par la densité courante de dislocations et de la microstructure, traduisant l’effet...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - HULL (D.), BACON (D.J.) -   Introduction to Dislocations.  -  Fifth Edition. Butterworth-Heinemann. Elsevier (2011).

  • (2) - DAS (A.) -   Revisiting Stacking Fault Energy in Steels.  -  Met. Mater.Trans. A 47A, p. 748 (2016).

  • (3) - HAASE (C.), CHOWDHURY (S.G.), BARRALES-MORA (L.A.), MOLODOV (D.A.), GOTTSTEIN (G.) -   On the Relation of Microstructure and Texture Evolution in an Austenitic Fe-28Mn-0.28C TWIP Steel During Cold Rolling.  -  Met. Mater. Trans. A 44A, p. 911 (2013).

  • (4) - BUNGE (H.J.) -   Texture analysis in materials science.  -  Butterworth, Londres (1982).

  • (5) - JIANG (Z.), LIAN (J.), BAUDELET (B.) -   A dislocation density approximation for the flow stress – grain size relation of polycrystals.  -  Acta Metal. Mater. 43, p. 3349 (1995).

  • (6) - ARMSTRONG (R.), DOUTHWAITE...

1 Sites Internet

Site du Bureau de Normalisation des Aciers (BN Aciers)

http://www.acier.org/menu-left/normalisation.html (pages consultées en janvier 2016)

HAUT DE PAGE

1.1 Organismes – Fédérations – Associations (liste non exhaustive)

Fédération Française de l’Acier (FFA)

http://www.acier.org/

Office technique pour l'utilisation de l'acier (Construire Acier)

http://www.construiracier.fr/

Réseau National de Métallurgie (SF2M)

http://sf2m.fr/CommissionsThematiques/RN_Metallurgie.htm

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS