Présentation
En anglaisRÉSUMÉ
L’hydrométallurgie a été initialement développée pour extraire des métaux contenus dans des minerais (ressources primaires). Depuis plusieurs décennies, l’hydrométallurgie a dû s’adapter à la nature de plus en plus complexe des minerais et elle est la technologie de choix pour traiter les ressources secondaires (résidus miniers et déchets à recycler). Elle permet d’extraire et de séparer efficacement des éléments métalliques contenus dans des matières premières ou secondaires complexes, et de produire des sels métalliques ou des métaux ultra-purs pour faire face à la demande dans de nombreux domaines stratégiques. Cet article présente les différentes opérations unitaires des procédés hydrométallurgiques et la physicochimie impliquée dans ces opérations.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The hydrometallurgy was initially developed to extract metals from ores (primary resources). For several decades, hydrometallurgy has had to adapt to complex ores-bodies. Hydrometallurgy is also the technology of choice for processing secondary resources (tailings and waste to recycle). It makes it possible to efficiently extract and separate metals contained in complex raw materials and secondary resources, and to produce metallic salts or ultra-pure metals requested in many strategic applications. This article presents the different unit operations of hydrometallurgical processes and the physicochemistry involved in these operations.
Auteur(s)
-
Alexandre CHAGNES : Professeur des universités - Directeur scientifique du LabEX RESSOURCES21 Université de Lorraine – GéoRessources – UMR CNRS 7359, 2, rue du Doyen Marcel-Roubault, 54505 Vandœuvre-lès-Nancy (France)
INTRODUCTION
Les procédés de la métallurgie extractive reposent sur une première étape minéralurgique qui a pour but de concentrer les métaux contenus dans les ressources à traiter (ressources primaires issues de la mine, ressources secondaires issues des activités minières ou de recyclage) afin de faciliter les étapes mises en œuvre en aval et de réduire les volumes de flux à traiter, donc la dimension des installations industrielles, et ainsi le coût de traitement (CAPEX et OPEX). Les étapes en aval du procédé minéralurgique peuvent faire intervenir une voie pyrométallurgique ou une voie hydrométallurgique.
La pyrométallurgie a été la première voie employée pour valoriser les métaux contenus dans les ressources primaires dès l’Antiquité. L’hydrométallurgie, quant à elle, n’a vu le jour qu’à partir de la fin du XIXe siècle. On peut par exemple citer le procédé de cyanuration de l’or qui a été développé en 1887 et celui de l’argent, en 1900, ou encore l’électrolyse du zinc, réalisée industriellement à partir de 1916. L’hydrométallurgie s’est fortement développée depuis le début du XXe siècle et elle continue de prendre le pas sur les procédés pyrométallurgiques pour la production de nombreux métaux contenus dans les ressources primaires (Zn, Ni, Cu, terres rares) mais aussi plus récemment pour le recyclage (récupération des terres rares dans les aimants permanents, recyclage des déchets d’équipements électriques et électroniques dont les batteries lithium-ion, etc.).
Par rapport à la pyrométallurgie, l’hydrométallurgie est moins coûteuse en énergie puisque les opérations sont effectuées à des températures bien inférieures. Le facteur de taille est aussi à considérer, car de petites unités peuvent être conçues à des coûts réduits. Elle permet aussi le traitement de minerais plus pauvres tout en améliorant le raffinage et le rendement d’extraction.
Nous verrons tour à tour, dans cet article, les diverses étapes d’un traitement hydrométallurgique, des éléments de dimensionnement ainsi que des exemples de traitements de minerais et de déchets.
KEYWORDS
hydrometallurgy | recycling | primary and secondary resources
VERSIONS
- Version archivée 1 de juil. 1988 par André CHESNÉ, Dominique PAREAU
- Version archivée 2 de juin 2000 par Laurent RIZET, Pierre-Emmanuel CHARPENTIER
- Version archivée 3 de sept. 2000 par Laurent RIZET, Pierre-Emmanuel CHARPENTIER
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Élaboration et recyclage des métaux
(135 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Dimensionnement d’un procédé hydrométallurgique
Les différentes étapes d’un procédé hydrométallurgique font appel à de nombreuses notions de chimie et de génie chimique. Des notions de thermodynamique et d’équilibre chimique, de transfert de matière, de cinétique chimique, de physicochimie des opérations d’extraction et d’électrochimie sont nécessaires à la compréhension de l’ensemble des réactions se produisant tout au long d’un procédé. Nous verrons tour à tour des éléments de calcul de chacune de ces étapes.
5.1 Notions de thermodynamique et d’équilibre chimique
Pour une étude plus poussée sur ces notions, le lecteur pourra se reporter à [AF 4 040] [AF 4 050] [J 1 025] [J 1 026].
Rappelons tout d’abord quelques fonctions d’état :
-
H est l‘enthalpie :
Cet article fait partie de l’offre
Élaboration et recyclage des métaux
(135 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Dimensionnement d’un procédé hydrométallurgique
BIBLIOGRAPHIE
-
(1) - SHIH (Y.J.), CHIEN (S.K.), JHANG (S.R.), LIN (Y.C.) - Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries. - J. Taiwan Inst. Chem. Eng., 100, p. 151-159 (2019).
-
(2) - LI (L.) et LU (J.Y.R) - Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. - J. Power Sources, 218 p. 21-27 (2012).
-
(3) - GOLMOHAMMADZADEH (R.J.), FARAJI (F.), RASHCHI (F.) - Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review. - Resource Conservation and Recycling,136, p. 418-435 (2018).
-
(4) - LEWIS (A.E.) - Review of metal sulphide precipitation. - Hydrometallurgy, 104(2), p. 224-234 (2010).
-
(5) - CHAGNES (A.), SWIATOWSKA (J.) - Lithium process chemistry: resources, extractions, batteries and recycling. - Elsevier (2015).
-
...
DANS NOS BASES DOCUMENTAIRES
-
Fragmentation appliquée aux minerais métalliques.
-
Biotechnologies dans la métallurgie extractive – Microbiologie et extraction des métaux.
Cet article fait partie de l’offre
Élaboration et recyclage des métaux
(135 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive