Présentation

Article

1 - CONTEXTE

2 - TECHNIQUES D'ÉLABORATION

  • 2.1 - Élaboration des alliages nanocristallins Sm2(Fe,M)17 et de leurs précurseurs
  • 2.2 - Insertion d'un élément léger

3 - PROPRIÉTÉS STRUCTURALES

4 - PROPRIÉTÉS MAGNÉTIQUES

5 - CONCLUSION

Article de référence | Réf : RE137 v1

Contexte
Composés d'insertion intermétalliques magnétiquement durs

Auteur(s) : Lotfi BESSAIS

Date de publication : 10 mars 2012

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Lotfi BESSAIS : Professeur des Universités ICMPE, UMR 7182, CNRS – Université Paris 12

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Résumé

Les propriétés magnétiques intrinsèques des matériaux à base de terres rares et métaux de transition sont considérablement améliorées par l'insertion d'un élément léger tel que l'hydrogène, le carbone ou l'azote. Quant aux propriétés magnétiques extrinsèques, elles sont optimisées par l'élaboration de nanomatériaux qui permettent de mettre en évidence de nouvelles phases aux caractéristiques performantes.

Abstract

The insertion of a light element such as the hydrogen, the carbon or the nitrogen in alloys with rare earth and transition metals improves drastically the intrinsic magnetic properties of these materials. With the aim of optimizing the extrinsic magnetic properties, the elaboration of nanomaterials leads to new phases in the successful magnetic characteristics.

Mots-clés

nanomatériaux magnétiques, enregistrement magnétique, aimants permanents

Keywords

nanomagnetic materials, recoding media, permanent magnets

Points clés

Domaine : Énergie

Degré de diffusion de la technologie : Émergence | Croissance | Maturité

Technologies impliquées : aimants permanents, moteurs hybrides

Domaines d'application : éoliennes, réfrigération magnétique

Principaux acteurs français :

Centres de compétence : CNRS laboratoire ICMPE et Institut Néel, ENS Cachan, Laboratoire de la matière condensée de l'Université Dumaïne

Autres acteurs dans le monde : Toyota, Airbus

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-re137


Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

1. Contexte

Dans le cadre des matériaux fonctionnels, les matériaux magnétiques à température de Curie élevée sont à la base de développements technologiques très vastes, tant pour l'électrotechnique que pour l'enregistrement magnétique à haute densité. Dans ces domaines, avec la troisième génération de matériaux pour aimants permanents représentée par les alliages, en progrès constant, à base de terre rare et métaux de transition, les espoirs sont encore grands.

La découverte simultanée dans les années 1980 au Japon et aux États-Unis, de l'alliage anisotrope Nd2Fe14B a permis, malgré des caractéristiques intrinsèques nettement moins performantes, de remplacer l'aimant SmCo5 devenu trop onéreux. Dans cette nouvelle voie, le défi offert à la communauté scientifique était de mettre au point des méthodes permettant de stabiliser le fer, bon marché, dans de nouvelles phases à base de terre rare. Ainsi, de nouveaux alliages R-M (R = terre rare, M = métal de transition) avec une stœchiométrie R/M égale à 1/12 ou 2/17, se sont avérés très prometteurs, notamment lorsqu'un élément léger tel que l'hydrogène , le carbone ou l'azote  est inséré dans le réseau cristallin. Par ailleurs, on sait que les progrès dans le domaine de l'application dépendent de la maîtrise de la coercitivité et imposent un contrôle combiné de l'anisotropie magnétocristalline et de la microstructure.

Parmi les éléments M, le fer apparaît comme le plus attractif du fait de ses caractéristiques intrinsèques élevées et de son coût relativement bas. Il ressort que dans la famille des intermétalliques R-M non conventionnels, les alliages Sm-Fe sont les plus prometteurs. Les binaires intermétalliques de type Sm2Fe17 sont cependant caractérisés par...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Contexte
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CHRISTODOULOU (C.N.), TAKESHITA (T.) -   *  -  J. Alloys Compd., 198, p. 1 (1993).

  • (2) - COEY (J.M.D.), SUN (H.) -   *  -  J. Magn. Magn. Mater., 87, p. L251 (1990).

  • (3) - HANDSTEIN (A.) et al -   *  -  J. Magn. Magn. Mater., 192, p. 281 (1999).

  • (4) - KUBIS (M.) et al -   *  -  J. Magn. Magn. Mater., 217, p. 14 (2000).

  • (5) - SHEN (B.G.) et al -   *  -  J. Phys., Condens. Matter, 7, p. 883 (1995).

  • (6) - van LIER (J.) et al -   *  -  J. Appl. Phys., 83, p. 5549 (1998).

  • (7) - CAO (L.) et al -   *  -  J. Appl. Phys., 81, p. 4539 (1997).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS