Présentation

Article

1 - CONTEXTE

2 - TECHNIQUES D'ÉLABORATION

  • 2.1 - Élaboration des alliages nanocristallins Sm2(Fe,M)17 et de leurs précurseurs
  • 2.2 - Insertion d'un élément léger

3 - PROPRIÉTÉS STRUCTURALES

4 - PROPRIÉTÉS MAGNÉTIQUES

5 - CONCLUSION

Article de référence | Réf : RE137 v1

Propriétés magnétiques
Composés d'insertion intermétalliques magnétiquement durs

Auteur(s) : Lotfi BESSAIS

Date de publication : 10 mars 2012

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Lotfi BESSAIS : Professeur des Universités ICMPE, UMR 7182, CNRS – Université Paris 12

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Résumé

Les propriétés magnétiques intrinsèques des matériaux à base de terres rares et métaux de transition sont considérablement améliorées par l'insertion d'un élément léger tel que l'hydrogène, le carbone ou l'azote. Quant aux propriétés magnétiques extrinsèques, elles sont optimisées par l'élaboration de nanomatériaux qui permettent de mettre en évidence de nouvelles phases aux caractéristiques performantes.

Abstract

The insertion of a light element such as the hydrogen, the carbon or the nitrogen in alloys with rare earth and transition metals improves drastically the intrinsic magnetic properties of these materials. With the aim of optimizing the extrinsic magnetic properties, the elaboration of nanomaterials leads to new phases in the successful magnetic characteristics.

Mots-clés

nanomatériaux magnétiques, enregistrement magnétique, aimants permanents

Keywords

nanomagnetic materials, recoding media, permanent magnets

Points clés

Domaine : Énergie

Degré de diffusion de la technologie : Émergence | Croissance | Maturité

Technologies impliquées : aimants permanents, moteurs hybrides

Domaines d'application : éoliennes, réfrigération magnétique

Principaux acteurs français :

Centres de compétence : CNRS laboratoire ICMPE et Institut Néel, ENS Cachan, Laboratoire de la matière condensée de l'Université Dumaïne

Autres acteurs dans le monde : Toyota, Airbus

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-re137


Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Propriétés magnétiques

Après avoir présenté les effets de la substitution partielle du fer par le gallium sur les paramètres cristallographiques des alliages d'équilibre Sm2Fe17–x Ga x et des précurseurs hors-équilibre SmFe9–y Ga y , nous suivons l'évolution des propriétés magnétiques intrinsèques (température de Curie, paramètres hyperfins) de ces composés. Nous essayons de corréler ces propriétés aux modifications structurales induites par la substitution, pour les deux classes de composés.

4.1 Température de Curie

HAUT DE PAGE

4.1.1 Composés Sm2(Fe,Ga)17 et leurs précurseurs Sm(Fe,Ga)9

Les températures de Curie TC des composés Sm2Fe17–x Ga x et de leurs précurseurs hors-équilibre SmFe9–y Ga y ont été mesurées sur des échantillons en ampoule scellée sous vide secondaire avec un champ appliqué de 1 000 Oe.

Dans les composés intermétalliques de type R2Fe17 , la température de Curie (TC ) est basse, autour de la température ambiante (418 K pour Sm2Fe17. Cela est dû principalement aux courtes distances interatomiques Fe-Fe des haltères (dumbells ) (6c pour la structure R 3 ¯ m et 2e pour P6/mmm), où les atomes de Fe sont couplés antiferromagnétiquement. Cette distance attachée aux sites des haltères, inférieure à 2,45 Å, conduit à des interactions Fe-Fe négatives ...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Propriétés magnétiques
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - CHRISTODOULOU (C.N.), TAKESHITA (T.) -   *  -  J. Alloys Compd., 198, p. 1 (1993).

  • (2) - COEY (J.M.D.), SUN (H.) -   *  -  J. Magn. Magn. Mater., 87, p. L251 (1990).

  • (3) - HANDSTEIN (A.) et al -   *  -  J. Magn. Magn. Mater., 192, p. 281 (1999).

  • (4) - KUBIS (M.) et al -   *  -  J. Magn. Magn. Mater., 217, p. 14 (2000).

  • (5) - SHEN (B.G.) et al -   *  -  J. Phys., Condens. Matter, 7, p. 883 (1995).

  • (6) - van LIER (J.) et al -   *  -  J. Appl. Phys., 83, p. 5549 (1998).

  • (7) - CAO (L.) et al -   *  -  J. Appl. Phys., 81, p. 4539 (1997).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS