Présentation

Article

1 - PHYSIQUE DU SUPERPARAMAGNÉTISME

2 - SYNTHÈSE DE NANOPARTICULES POUR L'ÉLABORATION D'UN FERROFLUIDE

3 - APPLICATIONS

Article de référence | Réf : N4590 v1

Physique du superparamagnétisme
Ferrofluides - Nanoparticules superparamagnétiques

Auteur(s) : Irena MILOSEVIC, Laurence MOTTE, Frédéric MAZALEYRAT

Date de publication : 10 avr. 2011

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Sauf cas très particulier, le champ magnétique n'a pas d'effet macroscopique sensible sur un liquide. Un ferrofluide se résume donc à une dispersion colloïdale de nanoparticules magnétiques dans un liquide porteur, sensible à un champ magnétique externe. La combinaison des propriétés rhéologiques des liquides, et magnétiques des particules, confère au ferrofluides des propriétés et une gamme inédite de comportements macroscopiques. Les ferrofluides n'existant pas à l'état naturel, il faut les synthétiser en produisant des nanoparticules métalliques ou d'oxydes, en évitant leur agglomération et la sédimentation pour garantir la stabilité de la suspension colloïdale.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

Les premiers ferrofluides ont été synthétisés par F. Bitter au début des années 1930 avec l'idée de mettre en évidence les domaines de Weiss. Ces domaines, dont l'existence a été postulée en 1907 par le physicien français Pierre Weiss, constituent des zones dans lesquelles l'aimantation a une direction et une intensité uniforme. Il était fondamental de vérifier expérimentalement et directement cette hypothèse, car elle était indispensable pour assurer la compatibilité entre la théorie du magnétisme (théorie du champ moléculaire de Weiss) et l'existence d'un état macroscopiquement désaimanté. L'idée de Bitter est de mettre en évidence les domaines de la même façon que l'on met en évidence le champ magnétique avec de la limaille de fer. Cependant, l'échelle étant beaucoup plus petite, il était nécessaire de disposer de particules magnétiques très petites . Améliorée par W.C. Ellmore , la solution obtenue est peu stable.

En 1966, Papell mélange de la poudre de magnétite à du kérosène et broie l'ensemble pendant 10 mois en présence d'acide oléique. Rosensweig améliore le fluide de Papell et crée l'entreprise Ferrofluidics avec R. Moskowitz. En 1980, R. Massart invente le ferrofluide sans tensioactif : dans ce cas, c'est la charge ionique de surface qui assure la stabilité.

Les ferrofluides ont été longtemps cantonnés à la visualisation des domaines de Weiss (figures de Bitter) avant de susciter un intérêt théorique vers la fin des années 1940. Néel étudia notamment des particules de fer et des roches contenant une faible quantité de particules de magnétite, ce qui lui permit d'introduire la notion de « relaxation ». L'un des principaux obstacles était de disposer de particules dispersées de taille et de forme contrôlée. Cela fut réalisé à la fin des années 1950 par solidification rapide d'un mélange de fer et de cuivre très majoritaire, conduisant à la formation de petits précipités de fer dans la matrice de cuivre. C'est en travaillant sur ces échantillons que Bean et Livingstone identifièrent le comportement de type paramagnétique des nanoparticules, définirent la température de blocage et forgèrent le terme « superparamagnétique ».

Depuis les premières applications industrielles dans les années 1970, les ferrofluides sont demeurés un produit de niche, avec un nombre d'applications très limité (haut-parleurs et joints pour pompes turbomoléculaires), mais on note ces dernières années un fort intérêt industriel pour des applications de plus grande portée économique, comme les amortisseurs actifs et surtout une grande variété d'applications en biologie.

Un tableau des symboles est présenté en fin d'article.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-n4590


Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

1. Physique du superparamagnétisme

1.1 Définitions

HAUT DE PAGE

1.1.1 Polarisation et moment magnétique

La polarisation magnétique, J (en T), est une mesure de la somme des moments atomiques par unité de volume par rapport à un axe de quantification. Quand tous les moments sont alignés dans la même direction, en particulier sous l'action d'un fort champ magnétique d'excitation H (A · m–1), le matériau est saturé et J = J S.

La polarisation est équivalente à l'aimantation, M (A · m–1), exprimée dans une unité différente du système mksA.

L'aimantation à saturation dépend essentiellement de la composition chimique et varie entre 0,3 et 2,4 T à température ambiante pour les matériaux magnétiques usuels.

Pour les particules, on utilise aussi couramment la notion de moment magnétique, M (A · m2) qui correspond à la somme des moments de la particule, de sorte que :

M=MV= μ 0 JV ( 1 )

La densité d'énergie magnétostatique associée est :

W ms = J S 2 2 μ 0 ( 2 )

Idéalement, un ferrofluide devrait avoir la plus forte polarisation magnétique possible (2,4 T pour le Fe2Co). Cependant, les nanoparticules métalliques...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Physique du superparamagnétisme
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - HYTCH (M.) et al -   *  -  Physical Review Letters.

  • (2) - NÉEL (L.) -   *  -  C.R. Acad. Sc. 228, p. 664 (1949).

  • (3) -   *  -  Barrandiaran.

  • (4) - BITTER (F.) -   *  -  Phys. Rev., 41, p. 507 (1932).

  • (5) - ELLMORE (W.C.) -   *  -  Phys. Rev., 54, p. 309 (1938).

  • (6) - JOLIVET (J.P.) -   De la solution à l'oxyde.  -  InterEditions/CNRS Éditions (1994).

  • (7) - CHAUDRET (B.) -   *  -  CR Physique, 6 (2005).

  • ...

1 Sites Internet

Sur les ferrofluides http://fr.wikipedia.org/wiki/Ferrofluide

Jeux avec des ferrofluides

Nombreuses vidéos à voir sur YouTube et DailyMotion http://archives.universcience.fr/francais/ala_cite/expositions/nanotechnologies/fondements/fondements_3b.php

Mirroir à ferrofluide http://www.chm.ulaval.ca/aritcey/fr/domaines%20de%20recherche.html#miroirs

Joints d'étanchéité http://en.wikipedia.org/wiki/Ferrofluidic_seals

HAUT DE PAGE

2 Événements

Magnetism and Magnetic Materials Conference (MMM), congrès international se tenant tous les ans aux USA http://www.magnetism.org/

Intermag, congrès international annuel, généralement aux USA les années paires,...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS