Présentation
En anglaisRÉSUMÉ
Sauf cas très particulier, le champ magnétique n'a pas d'effet macroscopique sensible sur un liquide. Un ferrofluide se résume donc à une dispersion colloïdale de nanoparticules magnétiques dans un liquide porteur, sensible à un champ magnétique externe. La combinaison des propriétés rhéologiques des liquides, et magnétiques des particules, confère au ferrofluides des propriétés et une gamme inédite de comportements macroscopiques. Les ferrofluides n'existant pas à l'état naturel, il faut les synthétiser en produisant des nanoparticules métalliques ou d'oxydes, en évitant leur agglomération et la sédimentation pour garantir la stabilité de la suspension colloïdale.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Except in limited cases, the magnetic field has no macroscopic effect on liquid. A ferro-fluid can be summed up as a colloidal dispersion of magnetic nanoparticles in a carrier liquid, sensitive to an external magnetic field. The combination of the rheological properties of liquid and magnetic particles confers on the ferro-fluid properties and a new range of macroscopic behaviors. Ferro-fluids do not exist in nature, they must be synthesized by producing metallic nanoparticles or oxides, avoiding their agglomeration and sedimentation to ensure the stability of the colloidal suspension.
Auteur(s)
-
Irena MILOSEVIC : Docteur ès sciences
-
Laurence MOTTE : Docteur ès sciences - Professeur à l'université Paris 13
-
Frédéric MAZALEYRAT : Docteur ès sciences - Professeur à l'ENS Cachan
INTRODUCTION
Les premiers ferrofluides ont été synthétisés par F. Bitter au début des années 1930 avec l'idée de mettre en évidence les domaines de Weiss. Ces domaines, dont l'existence a été postulée en 1907 par le physicien français Pierre Weiss, constituent des zones dans lesquelles l'aimantation a une direction et une intensité uniforme. Il était fondamental de vérifier expérimentalement et directement cette hypothèse, car elle était indispensable pour assurer la compatibilité entre la théorie du magnétisme (théorie du champ moléculaire de Weiss) et l'existence d'un état macroscopiquement désaimanté. L'idée de Bitter est de mettre en évidence les domaines de la même façon que l'on met en évidence le champ magnétique avec de la limaille de fer. Cependant, l'échelle étant beaucoup plus petite, il était nécessaire de disposer de particules magnétiques très petites . Améliorée par W.C. Ellmore , la solution obtenue est peu stable.
En 1966, Papell mélange de la poudre de magnétite à du kérosène et broie l'ensemble pendant 10 mois en présence d'acide oléique. Rosensweig améliore le fluide de Papell et crée l'entreprise Ferrofluidics avec R. Moskowitz. En 1980, R. Massart invente le ferrofluide sans tensioactif : dans ce cas, c'est la charge ionique de surface qui assure la stabilité.
Les ferrofluides ont été longtemps cantonnés à la visualisation des domaines de Weiss (figures de Bitter) avant de susciter un intérêt théorique vers la fin des années 1940. Néel étudia notamment des particules de fer et des roches contenant une faible quantité de particules de magnétite, ce qui lui permit d'introduire la notion de « relaxation ». L'un des principaux obstacles était de disposer de particules dispersées de taille et de forme contrôlée. Cela fut réalisé à la fin des années 1950 par solidification rapide d'un mélange de fer et de cuivre très majoritaire, conduisant à la formation de petits précipités de fer dans la matrice de cuivre. C'est en travaillant sur ces échantillons que Bean et Livingstone identifièrent le comportement de type paramagnétique des nanoparticules, définirent la température de blocage et forgèrent le terme « superparamagnétique ».
Depuis les premières applications industrielles dans les années 1970, les ferrofluides sont demeurés un produit de niche, avec un nombre d'applications très limité (haut-parleurs et joints pour pompes turbomoléculaires), mais on note ces dernières années un fort intérêt industriel pour des applications de plus grande portée économique, comme les amortisseurs actifs et surtout une grande variété d'applications en biologie.
Un tableau des symboles est présenté en fin d'article.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
1. Physique du superparamagnétisme
1.1 Définitions
1.1.1 Polarisation et moment magnétique
La polarisation magnétique, J (en T), est une mesure de la somme des moments atomiques par unité de volume par rapport à un axe de quantification. Quand tous les moments sont alignés dans la même direction, en particulier sous l'action d'un fort champ magnétique d'excitation H (A · m–1), le matériau est saturé et J = JS.
La polarisation est équivalente à l'aimantation, M (A · m–1), exprimée dans une unité différente du système mksA.
L'aimantation à saturation dépend essentiellement de la composition chimique et varie entre 0,3 et 2,4 T à température ambiante pour les matériaux magnétiques usuels.
Pour les particules, on utilise aussi couramment la notion de moment magnétique, (A · m2) qui correspond à la somme des moments de la particule, de sorte que :
La densité d'énergie magnétostatique associée est :
Idéalement, un ferrofluide devrait avoir la plus forte polarisation magnétique possible (2,4 T pour le Fe2Co). Cependant, les nanoparticules métalliques étant peu stables chimiquement et parfois toxiques, on préfère utiliser des oxydes magnétiques de structure spinelle : magnétite, maghémite, ferrite de manganèse (JS ~ 0,5 T) ou ferrite de nickel (JS ~ 0,3 T).
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Physique du superparamagnétisme
BIBLIOGRAPHIE
-
(1) - HYTCH (M.) et al - * - Physical Review Letters.
-
(2) - NÉEL (L.) - * - C.R. Acad. Sc. 228, p. 664 (1949).
-
(3) - * - Barrandiaran.
-
(4) - BITTER (F.) - * - Phys. Rev., 41, p. 507 (1932).
-
(5) - ELLMORE (W.C.) - * - Phys. Rev., 54, p. 309 (1938).
-
(6) - JOLIVET (J.P.) - De la solution à l'oxyde. - InterEditions/CNRS Éditions (1994).
-
(7) - CHAUDRET (B.) - * - CR Physique, 6 (2005).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Sur les ferrofluides http://fr.wikipedia.org/wiki/Ferrofluide
Jeux avec des ferrofluides
Nombreuses vidéos à voir sur YouTube et DailyMotion http://archives.universcience.fr/francais/ala_cite/expositions/nanotechnologies/fondements/fondements_3b.php
Mirroir à ferrofluide http://www.chm.ulaval.ca/aritcey/fr/domaines%20de%20recherche.html#miroirs
Joints d'étanchéité http://en.wikipedia.org/wiki/Ferrofluidic_seals
HAUT DE PAGE
Magnetism and Magnetic Materials Conference (MMM), congrès international se tenant tous les ans aux USA http://www.magnetism.org/
Intermag, congrès international annuel, généralement aux USA les années paires,...
Cet article fait partie de l’offre
Matériaux fonctionnels - Matériaux biosourcés
(204 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive