Présentation

Article

1 - COMPORTEMENT PLASTIQUE DU MONOCRISTAL

  • 1.1 - Gradient de vitesse, taux de glissement et mouvement de dislocations
  • 1.2 - Analyse thermodynamique. Forces motrices et forces critiques
  • 1.3 - Relation de comportement pour le monocristal

2 - COMPORTEMENT DU POLYCRISTAL

  • 2.1 - Principe des méthodes d’homogénéisation (indications)
  • 2.2 - Modèles à base d’inclusions
  • 2.3 - Modèle autocohérent
  • 2.4 - Extensions

3 - APPLICATIONS

4 - CONCLUSIONS

Article de référence | Réf : M48 v1

Applications
Modélisation de la déformation plastique des polycristaux

Auteur(s) : Marcel BERVEILLER, André ZAOUI

Date de publication : 10 mars 1997

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

Auteur(s)

  • Marcel BERVEILLER : Ingénieur INSA (Institut national des sciences appliquées) de Lyon - Docteur ès sciences - Professeur à l’École nationale d’ingénieurs de Metz, Laboratoire de physique et mécanique des matériaux

  • André ZAOUI : Docteur ès sciences, - Ingénieur civil de l’École des mines de Paris - Directeur de recherche au Centre national de la recherche scientifique - Professeur à l’École polytechnique

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Si l’essentiel des bases physiques de la plasticité des métaux et alliages est maintenant bien identifié et compris, la prédiction quantitative du comportement plastique d’un métal polycristallin demeure, malgré les progrès importants réalisés dans ce domaine ces dernières décennies, un champ de recherche encore très ouvert. La difficulté d’une telle modélisation a plusieurs origines, notamment :

  • la nature fortement non linéaire des phénomènes attachés à la plasticité et donc des équations les décrivant, ceci quels que soient l’échelle adoptée ou le mécanisme décrit (par opposition à l’élasticité linéaire où l’on peut écrire simplement : σ = C : ε ) ;

  • le caractère complexe et varié des mécanismes physiques à prendre en compte : création, mouvement, annihilation et stockage de dislocations, empilement sur les joints de grains, rotations des réseaux cristallins, formation de sous-structures cellulaires, création de défauts ponctuels, frottement du réseau... ;

  • l’intervention simultanée de plusieurs échelles caractéristiques (quelques dislocations, les cellules, les grains...), contribuant chacune, de manière spécifique, à la réponse macroscopique ;

  • l’amplitude considérable que peuvent avoir les déformations plastiques et les modifications importantes de l’état métallurgique du matériau qui y sont associées : textures cristallographiques et morphologiques, « hétérogénéisation plastique » par formation de cellules... De sucroît, ces modifications dépendent fortement du trajet de chargement suivi (rétreint, expansion, traction uniaxiale...).

On pourrait tenter un passage continu de la dislocation au polycristal... Mais si le comportement statique d’une dislocation ou même d’une distribution continue de dislocations est bien connu, il n’en va pas de même de celui du système complexe et évolutif de dislocations en interaction qu’il faudrait prendre en compte pour parvenir jusqu’à l’échelle du polycristal. C’est la raison pour laquelle les promoteurs du passage du monocristal au polycristal (Sachs, Taylor et d’autres) ont conçu une approche plus globale, se situant d’emblée à l’échelle des grains et ne décrivant qu’indirectement, de façon moyenne, le comportement collectif des dislocations intragranulaires par l’intermédiaire du glissement plastique cristallographique.

Les concepts de cission réduite et de cission critique introduits par Schmid ont alors permis le développement de ce qu’on appelle depuis la plasticité cristalline, approche selon laquelle le comportement des grains est décrit par des relations entre les cissions sur différents systèmes de glissement et leurs glissements plastiques. Il reste ensuite à effectuer, dans le cadre de la mécanique des milieux continus, la transition d’échelle entre le niveau qu’on peut dire « mésoscopique » (le grain) et le niveau macroscopique de l’élément de volume polycristallin, en prenant en compte les interactions intergranulaires, l’architecture du polycristal (forme, orientation et disposition relative des grains, texture cristallographique...) et leur évolution.

Cet article s’éfforce de donner une vision succincte et synthétique de l’état actuel du savoir-faire en matière de modélisation de la déformation plastique des métaux polycristallins dans le cadre de l’approche de la plasticité cristalline. Le paragraphe 1 est consacré à la modélisation du comportement du monocristal et on présente, dans le paragraphe 2, la transition d’échelle du monocristal au polycristal, en mettant l’accent sur la méthode autocohérente, bien adaptée à la morphologie des polycristaux. Enfin, on rapporte quelques résultats représentatifs obtenus à partir d’une telle démarche et on les compare à des données expérimentales 3, avant de conclure sur les perspectives ouvertes dans ce domaine.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m48


Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

3. Applications

On présente, à titre d’illustration, quelques résultats obtenus pour la simulation du comportement de tôles d’acier à faible teneur en carbone, destinées à la mise en forme. Ces tôles sont élaborées par des procédés classiques (laminage à chaud, à froid, recuit) et possèdent donc une texture cristallographique initiale mesurée par les techniques usuelles de rayons X. La forme moyenne des grains est déterminée par métallographie.

Le réseau cristallin étant du type cubique centré, le glissement plastique est décrit par deux familles de systèmes de glissement {110} <111> et {112} <111>, ce qui conduit à 48 systèmes de glissement si on distingue les deux sens de glissement. Le comportement élastique est considéré comme isotrope (modules de Lamé λ =120 GPa, µ = 80 GPa).

Du fait du traitement de recuit final imposé au polycristal, on peut admettre que les contraintes internes sont nulles dans l’état de référence et que la cission critique initiale est identique sur tous les systèmes de glissement. Cette valeur ainsi que les paramètres (p, L, a gh) entrant dans la matrice d’écrouissage, prise, à partir de considérations de métallurgie physique, sous la forme :

sont obtenus à partir de la simulation d’un essai de traction (dans la direction de laminage DL) et d’une comparaison avec les mesures expérimentales (figure 1). L représente le libre parcours moyen des dislocations et a gh désigne une matrice de définition cristallographique, caractérisant les interactions entre dislocations de différents systèmes de glissement.

On constate que, jusqu’à des déformations plastiques de l’ordre de 20 %, le modèle est capable de bien représenter les résultats expérimentaux. La forte non-linéarité de la courbe de traction jusqu’à des déformations de l’ordre de 5 % provient de la plastification progressive des systèmes de glissement dans les différents grains du polycristal.

Les...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Applications
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - FRIEDEL (J.) -   Dislocations,  -  Pergamon, Oxford, (1964).

  • (2) - KRÖNER (E.) -   Kontinuums Theorie der Versetzungen und Eigenspannungen,  -  Springer Verlag, (1958).

  • (3) - SACHS (A.) -   Zur Ableitung einer Fliessbedingung,  -  Z. de V.D.I., 72, p. 734 à 746, (1928).

  • (4) - TAYLOR (G.I.) -   Plastic strain in metals,  -  J. Inst. Metals, 62, 307, (1938).

  • (5) - SCHMID (E.), BOAS (W.) -   Kristallplastizität,  -  Springer Verlag, Berlin, (1935).

  • (6) - BERVEILLER (M.), ZAOUI (A.) -   Modélisation du comportement mécanique des solides microhétérogènes,  -  dans « Introduction à la mécanique des polymères », éd. C. G’sell, J.M. Haudin, INPL, p. 225 à 249, (1994).

  • ...

DANS NOS BASES DOCUMENTAIRES

  • L’état métallique. Déformation plastique

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(201 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS