Présentation

Article

1 - ÉLABORATION DE L’ACIER

2 - ÉCHANGES CHIMIQUES ENTRE MÉTAL, LAITIER ET RÉFRACTAIRES

3 - CONCLUSION

4 - GLOSSAIRE

Article de référence | Réf : N4850 v1

Échanges chimiques entre métal, laitier et réfractaires
Du process sidérurgique aux céramiques réfractaires adaptées - Principes et échanges chimiques

Auteur(s) : Philippe BLUMENFELD, Jacques POIRIER

Date de publication : 10 sept. 2022

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Les performances des céramiques réfractaires dépendent des conditions de fabrication de l’acier. Les procédés d’élaboration des hauts fourneaux aux coulées continues et les grandes familles de réfractaires utilisées dans les outils sidérurgiques sont présentés dans cet article. Les échanges chimiques entre l’acier, les laitiers et les réfractaires sont décrits en détail.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

From Steel Making Process to Suitable Refractory Ceramics. Fundamental and Chemical Exchanges

The performance of refractory ceramics depends on the steel making conditions. The steel making processes, from blast furnaces to continuous casting and the main families of refractories used in steel plants are presented in this article. The chemical exchanges between steel, slags and refractories are described in detail.

Auteur(s)

  • Philippe BLUMENFELD : Expert en réfractaires du groupe ArcelorMittal, en retraite - Conseil, Beaucaire, France

  • Jacques POIRIER : Professeur émérite de l’université d’Orléans - CEMHTI – Conditions Extrêmes et Matériaux : Haute Température et Irradiation, CNRS, Orléans, France

INTRODUCTION

Les réfractaires sont des céramiques souvent polyphasées, majoritairement à base de mélange d’oxydes à haute température de fusion :

  • les réfractaires ne sont pas des métaux ni des alliages métalliques ;

  • ils doivent résister à 1 500 °C minimum sans ramollir et sans s’affaisser sous leur propre poids selon la norme (ISO/R 836) du test de résistance pyroscopique.

La sidérurgie est le plus gros consommateur de céramiques réfractaires, avec une part de marché supérieure à 60 % pondéral. Ceci s’explique par l’importance de la production mondiale d’acier et par la consommation spécifique très élevée de réfractaires.

L’élaboration de l’acier à partir des minerais de fer est une longue route où se succèdent de nombreux outils et des procédés très différents depuis l’amont de l’usine où la fonte est fabriquée dans le haut fourneau jusqu’à la coulée continue où l’acier liquide est solidifié.

Le premier objectif de cet article est d’introduire les procédés d’élaboration de l’acier.

On ne peut pas traiter des réfractaires sans connaître les procédés et le fonctionnement des différents fours, qui imposent les conditions et donc le choix des réfractaires. Les réfractaires de sidérurgie ont des performances qui dépendent des conditions d’utilisation en relation avec la fabrication du métal liquide. Les incidents et les contre-performances qui handicapent certaines usines trouvent très souvent leur origine dans des productions instables et des procédés de fabrication mal réglés. Il est donc essentiel que les responsables des réfractaires en usine et les concepteurs de produits connaissent les procédés et le détail des opérations de fabrication. Ils peuvent ainsi participer aux actions d’optimisation et de réglage des procédés en défendant les orientations qui favorisent la fiabilité et la minimisation des coûts des réfractaires.

Le second objectif est de décrire les grandes familles de réfractaires utilisées dans les outils sidérurgiques.

Le parti pris de cet article est de faire un survol de ce vaste domaine afin de saisir son originalité et d’acquérir une culture scientifique et technologique sur la sidérurgie et les réfractaires. Il est destiné aux techniciens et ingénieurs qui débutent dans le domaine mais aussi aux experts. Il n’est donc pas question ici d’acquérir une connaissance opérationnelle sur la fabrication de l’acier ou sur la conception des revêtements réfractaires des fours sidérurgiques, mais plutôt de saisir les notions physico-chimiques et les mécanismes critiques pour les réfractaires au cours de la fabrication de l’acier. Le domaine étant complexe, on se focalisera sur l’essentiel en termes de connaissances de base et de connaissances du contexte d’utilisation des réfractaires. Cet article cherche donc, sans a priori, à justifier les grandes idées du métier et de désamorcer certaines idées intuitives qui ne sont pas toujours justes.

Prenons quelques exemples. On peut imaginer que l’acier liquide à plus de 1 600 °C doit attaquer activement les réfractaires, et pourtant, ce n’est pas le cas ! Les laitiers qui sont formés d’oxydes liquides sont beaucoup plus agressifs : cet article s’attache à expliquer pourquoi et dans quels contextes. Le haut fourneau est traversé par des débits énormes de gaz (CO-CO2-N2) de l’ordre de 1 500 Nm3 par tonne de fonte : on ne peut qu’imaginer un impact extrême et pourtant les revêtements réfractaires y tiennent 15 ans. De fait, les gaz y ont un rôle prépondérant mais les autres sollicitations (température, cyclage thermique, contact avec les laitiers liquides) sont peu intenses.

Un second parti pris est celui de revenir aux notions de base et de les illustrer le mieux possible par des exemples industriels. On parcourt donc des notions essentielles de la physico-chimie des métaux et des oxydes : à la fois les réactions de réduction-oxydation (redox) et les réactions de dissolution. Les réactions redox sont au cœur des procédés métallurgiques. Les équilibres entre éléments métalliques, oxydes et gaz qui interviennent dans les procédés sidérurgiques seront présentées ainsi que les réactions de dissolution, très actives pour les réfractaires.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

steel   |   continuous casting   |   slags   |   blast furnaces

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-n4850


Cet article fait partie de l’offre

Verres et céramiques

(65 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

2. Échanges chimiques entre métal, laitier et réfractaires

2.1 Présentation du système chimique et des types de réactions

L’objectif de cette section est de présenter quelques notions un peu plus théoriques sur les réactions chimiques se produisant dans les fours de sidérurgie ayant un effet capital sur le comportement des réfractaires. Le métal liquide, les laitiers et les réfractaires y forment ensemble un système chimique, schématisé à la figure 15.

Ce système chimique « modèle » représentatif d’un four est constitué d’un bain de métal liquide de plusieurs centaines de tonnes, recouvert en surface de quelques tonnes de laitier d’oxydes liquides (1-10 tonnes, soit 1 à 5 % de la masse du métal) et entouré d’un creuset d’oxydes réfractaires solides . Il y a donc plusieurs domaines séparés par des interfaces, où peuvent se produire des transferts de matière. Les traitements métallurgiques successifs du haut fourneau à la coulée continue introduisent dans le métal des éléments réducteurs (carbone, aluminium, silicium) ou à l’opposé de l’oxygène (voir figure 15). Ceci provoque au sein du métal des réactions redox, un déplacement des équilibres éléments-oxydes et des évolutions de la pression partielle d’oxygène . Le métal liquide, fluide et brassé est un milieu réactif qui va s’équilibrer et s’homogénéiser en quelques minutes. La pression partielle d’oxygène du métal contrôlée par les éléments métalliques les plus réducteurs présents en quantité suffisante va s’imposer aux interfaces avec le laitier et le réfractaire. Le paragraphe 2.2 suivant décrira...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Verres et céramiques

(65 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Échanges chimiques entre métal, laitier et réfractaires
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BERANGER (G.), GUY (H.), SANZ (G.) -   Le livre de l’acier.  -  Lavoisier (1994).

  • (2) - CHIANG (Y.M.), BIMIE (D.), KINGERY (W.D.) -   Physical Ceramics: Principles for Ceramic Science and Engineering,  -  Willey MIT (1996).

  • (3) - URBAIN (G.), CAMBIER (F.), DELETTER (M.), ANSEAU (R.) -   Viscosity of silica melts,  -  Trans. J. Br. Ceram. Soc, 80 139-141 (1981).

  • (4) - URBAIN (G.) -      -  Rev. Int. Hautes Temp. Réfract., 20, 135-139 (1983).

  • (5) - LEVIN (M.E.), ROBBINS (R.C.), Mc MURDIE (F.H.) -   Phase diagrams for ceramists,  -  Volume I, The American Ceramic Society, INC (1964).

  • (6) - GAYE (H.), WELFRINGER (J.) -   Modelling of the Thermodynamic Properties of Complex Metallurgical Slags,  -  Proc. AIME Symposium on Metallurgical...

NORMES

  • (Matériaux réfractaires) - ISO IC81.080 -  

1 Sites Internet

Thermo-Calc logiciel thermodynamique à destination des siderurgistes https://thermocalc.com

FactSage logiciel d’ingénierie chimique

https://www.factsage.com

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Verres et céramiques

(65 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS