Présentation

Article

1 - MONOGRAPHIES

2 - TPE ET DÉVELOPPEMENT DURABLE

  • 2.1 - Matières premières renouvelables
  • 2.2 - Optimisation de l'utilisation de l'énergie
  • 2.3 - Recyclage
  • 2.4 - Respect de l'environnement

3 - DÉMARCHE GLOBALE ADAPTÉE AUX SPÉCIFICITÉS DES TPE

  • 3.1 - Conception
  • 3.2 - Choix d'un TPE
  • 3.3 - Choix de la méthode de transformation
  • 3.4 - Intégrer des étapes de fabrication par la cotransformation pour simplifier la logistique et réduire les coûts
  • 3.5 - Intégrer ou supprimer la finition

4 - CONCLUSION

Article de référence | Réf : AM3401 v1

Monographies
TPE d'ingénierie, bio-TPE, développement durable. Pour réussir

Auteur(s) : Michel BIRON

Date de publication : 10 oct. 2012

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les TPE (Thermo Plastic Elastomer) suivent les courants traditionnels d'évolution de l'industrie des matières plastiques. Sont présentées l’amélioration des performances grâce aux Super-TPE, ainsi que l’utilisation des ressources renouvelables à l'aide des bio-TPE intégrant des molécules, charges et fibres issus de ressources renouvelables ou alliant bio-TPE et plastiques d'origine fossile. Pour réussir dans l'utilisation des TPE, le choix d'un matériau ne doit être qu'une des étapes d'une démarche globale adaptée aux différentes spécificités. Cette démarche intervient, depuis la conception jusqu'à la finition, par le choix et la simplification des étapes de fabrication par l'intégration de fonctions, la co-transformation et l'automatisation afin de réduire les coûts.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Michel BIRON : Ingénieur de l'Institut national supérieur de chimie industrielle de Rouen (INSCIR) et de l'Institut français du caoutchouc (IFC) - Consultant

INTRODUCTION

Les élastomères thermoplastiques TPE suivent les grands courants actuels de l'industrie des matières plastiques : amélioration des performances, utilisation de produits issus de sources renouvelables, diminution des coûts. Ils font l'objet d'un premier dossier [AM 3 400].

L'amélioration des performances passe par l'utilisation de TPE d'ingénierie et de nouveaux TPE regroupés sous le terme de super-TPE. Ceux-ci conservent les avantages fondamentaux des TPE et TPV permettant la fabrication sur des équipements classiques pour thermoplastiques avec des débits beaucoup plus importants que ceux atteints avec les caoutchoucs vulcanisés conventionnels. En outre, ils combinent les avantages d'élastomères vulcanisés de haute performance avec ceux de plastiques d'ingénierie. Généralement conçus pour résister à une exposition prolongée à la chaleur et à des environnements agressifs, ils se situent entre les plastiques techniques et les caoutchoucs spéciaux. Cependant, il faut être conscient que les super-TPE ne peuvent pas remplacer tous les caoutchoucs vulcanisables dans toutes les applications. Les pneumatiques pour l'automobile, par exemple, ne font pas partie de leur domaine d'utilisation.

Il faut remarquer qu'il n'y a pas de frontière nette entre TPE et super-TPE. Certains copolyesters et polyéther bloc amides pourraient ainsi être classés dans les super-TPE.

Les bio-TPE sont produits à partir de sources renouvelables en empruntant plusieurs routes :

  • les polyéther-bloc-amides, les copolyesters ou encore les polyuréthanes thermoplastiques intégrant des molécules issues de plantes dans leurs chaînes macromoléculaires ;

  • des TPE intégrant des additifs, charges, fibres etc. issus de ressources renouvelables ;

  • des alliages de biopolymères et de plastiques d'origine fossile ;

  • des TPE issus de la technologie supramoléculaire.

Il est important de remarquer que les taux massiques de carbone renouvelable peuvent varier d'environ 20 % à pratiquement 100%, le complément étant d'origine fossile.

Le choix d'un TPE n'est qu'un des éléments du problème. Pour réussir dans l'utilisation des TPE, il faut utiliser au mieux leurs qualités et minimiser leurs défauts en adoptant une démarche globale adaptée.

En plus des règles générales de conception, notamment la juste évaluation des exigences à satisfaire, la conception finale doit être le fruit d'itérations prenant en compte :

  • les possibilités d'intégration du TPE dans la chaîne de fabrication du dispositif final à fabriquer ;

  • les possibilités d'intégration des différentes étapes de fabrication du TPE de façon à tendre vers un procédé en ligne totalement intégré de la matière première jusqu'au produit final emballé et contrôlé ;

  • les propriétés mécaniques exceptionnelles de certaines familles y compris en sollicitations dynamiques ;

  • le large choix de procédés, y compris le soufflage, thermoformage, soudage et la cotransformation adaptés aux cadences de production visées ;

  • les qualités sensorielles particulières pouvant conduire à la suppression d'étapes de finition et pouvant contribuer à la personnalisation des produits finis ;

  • la possibilité de recycler plus facilement les déchets de production et de fin de vie.

Bien sûr, la conception doit également tenir compte des inconvénients des TPE comme :

  • la thermoplasticité avec ses conséquences sur le fluage et la relaxation d'autant que la température s'élève ;

  • le prix matière qui doit être compensé par les économies de matières et de coûts de production.

Les taux et pourcentages, rencontrés dans ce texte, sont sauf indication contraire, massiques.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-am3401


Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

1. Monographies

1.1 Élastomères thermoplastiques polyuréthannes (TPU ou TPE-U)

HAUT DE PAGE

1.1.1 Introduction

Les polyuréthannes thermoplastiques sont constitués de séquences rigides polyuréthannes et de séquences souples polyesters ou polyéthers. En général, les polyesters ont de meilleures propriétés mécaniques et une bonne résistance chimique, alors que les polyéthers sont plus résistants à l'hydrolyse et aux attaques biologiques.

Les TPU font partie des élastomères thermoplastiques utilisés avec un renforcement de fibres de verre, ce qui leur confère une rigidité élevée et des applications qui sortent des emplois habituels des élastomères.

Les TPU sont commercialisés prêts à l'emploi sous forme de nombreux grades : résistance améliorée à l'hydrolyse, aux micro-organismes et aux huiles, ignifugés, renforcés fibres de verre, alimentaires, transparents, pour film, pour adhésifs.

Des TPU contenant des proportions variables de carbone issu de ressources renouvelables sont proposés.

Exemples des noms commerciaux : voir tableau 1.

HAUT DE PAGE

1.1.2 Préparation

Les TPU sont obtenus par copolymérisation de séquences rigides de copolymères de diol et isocyanate et de séquences souples de polyesters ou polyéthers.

Les propriétés, dont la dureté qui sert souvent à la dénomination des grades, varient fortement en fonction :

  • de la nature des segments souples : polyesters, polyéthers, polycarbonates, polycaprolactones ;

  • de la nature des segments polyuréthannes ;

  • de la longueur des segments souples ;

  • du rapport segments souples/segments rigides.

    Les TPU sont présentés prêts à l'emploi dans une grande variété de grades.

HAUT...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Monographies
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BIRON (M.) -   Thermoplastics and thermoplastic composites.  -  Elsevier (2012).

  • (2) - DROBNY (J.) -   Handbook of TPEs.  -  Elsevier (2007).

  • (3) - EL-SHEKEIL (Y.A.) et coll -   Development of a new kenaf bast fuber-reinforced thermoplastic polyurethane composite,  -  6(4), 4662-4672 (2011).

NORMES

  • Plastiques. Élastomères thermoplastiques à base de polyester/ester et polyéther/ester, pour moulage et extrusion. Partie 2 : préparation des éprouvettes et détermination des propriétés - ISO 14910-2 - 12-97

  • Caoutchouc : Vocabulaire - NF ISO 1382 - 2007

  • Élastomères thermoplastiques – Nomenclature et termes abrégés - NF EN ISO 18064 - 08-05

  • Plastiques – Élastomères thermoplastiques à base de polyester/ester et polyéther/ester, pour moulage et extrusion – Partie 2 : préparation des éprouvettes et détermination des propriétés - PR NF EN ISO 14910-2 - 07-10

  • Standard Practice for Thermoplastic Elastomers Terminology and Abbreviations - ASTM D5538-07 -

  • Standard Classification System for Highly Crosslinked Thermoplastic Vulcanizates (HCTPVs) Based on ASTM Standard Test Methods - ASTM D6338-10 -

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Plastiques et composites

(397 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS