Présentation

Article

1 - CONTEXTE

2 - PRINCIPE GÉNÉRAL DE L’ALD

3 - PROCÉDÉ ALD

4 - MATÉRIAUX DÉPOSÉS PAR ALD

  • 4.1 - Oxydes
  • 4.2 - Nitrures
  • 4.3 - Chalcogénures
  • 4.4 - Films élémentaires
  • 4.5 - Polymères organiques et hybrides
  • 4.6 - Composés fluorés
  • 4.7 - Multinaires

5 - APPLICATIONS DE L’ALD

  • 5.1 - ALD pour la microélectronique
  • 5.2 - ALD pour le photovoltaïque
  • 5.3 - ALD pour le stockage de l’énergie
  • 5.4 - ALD dans les applications émergentes

6 - CONCLUSION

7 - GLOSSAIRE

8 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : RE253 v1

Matériaux déposés par ALD
Atomic Layer Deposition (ALD) - Principes généraux, matériaux et applications

Auteur(s) : Nathanaelle SCHNEIDER, Frédérique DONSANTI

Date de publication : 10 oct. 2016

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Cet article détaille le principe de la méthode de dépôt chimique par flux alternés appelée Atomic Layer Deposition (ALD). À l’issue d’un inventaire des différents matériaux pouvant être déposés par cette technique, il est suivi d’un bref résumé de ses applications principales et émergentes.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Nathanaelle SCHNEIDER : Chargée de Recherche au CNRS, Docteur en chimie des Universités de Strasbourg et Heidelberg - Institut de Recherche et Développement de l’Énergie Photovoltaïque (IRDEP), UMR 7174 EDF-CNRS-Chimie ParisTech, Chatou, France Institut du Photovoltaïque d’Île-de-France (IPVF), France

  • Frédérique DONSANTI : Ingénieur chercheur à EDF, Docteur en génie des procédés et haute technologie de l’université Pierre et Marie Curie - Institut de Recherche et Développement de l’Énergie Photovoltaïque (IRDEP), UMR 7174 EDF-CNRS Chimie ParisTech, Chatou, France Institut du Photovoltaïque d’Île-de-France (IPVF), France

INTRODUCTION

La technique de dépôt chimique en phase vapeur par flux alternés, plus communément appelée Atomic Layer Deposition (ALD ou ALCVD) est une technique récente dérivée du dépôt chimique en phase vapeur (CVD). Ce procédé de dépôt est basé sur l’introduction séquentielle de- précurseurs, ce qui permet de fabriquer le matériau monocouche par monocouche et rend la croissance autolimitante et contrôlée par la surface.

Dans cet article, après un bref historique, nous expliquons en détail le principe de base de l’ALD. Pour cela, sont rappelées deux notions fondamentales qui lui sont liées (la CVD et l’adsorption), puis est décrite la croissance du matériau, en détaillant les différents mécanismes pouvant avoir lieu. Nous abordons également les classes de précurseurs adaptés à cette méthode, ainsi que les types de réacteur utilisés. Une attention particulière est portée à l’importance des paramètres de dépôt (précurseur, température, temps de pulse et de purge…) et leur influence sur les chimies de surface mises en jeu. Dans un second temps, est dressé l’inventaire des matériaux pouvant être déposés par cette technique en donnant quelques exemples de procédés. Enfin, nous détaillons les principales applications de ce procédé (microélectronique, photovoltaïque…) et indiquons également quelques applications émergentes.

Points clés

Domaine : Techniques de dépôt de couches minces

Degré de diffusion de la technologie : Maturité

Technologies impliquées : Dépôt par couche atomique (ALD, Atomic Layer Deposition)

Domaines d’application : Matériaux, Couches minces, Microélectronique, Photovoltaïque

Principaux acteurs français :

 Centres de compétence : SIMaP (Science et Ingénierie des Matériaux et Procédés), IEMM (Institut Européen des Membranes), LMI (Laboratoire des Multimatériaux et Interfaces), LMGP (Laboratoire des Matériaux et du Génie Physique), CIRIMAT (Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux), IRDEP (Institut de Recherche et Développement sur l’Énergie Photovoltaïque), IRCELYON (Institut de Recherches sur la Catalyse et l’Environnement de LYON), IRCP (Institut de Recherches de Chimie Paris), C2P2 (Catalyse, Chimie, Polymères et Procédés), INL (Institut de Nanotechnologies de Lyon), LTM (Laboratoire des Technologies de la Microélectronique), LAAS (Laboratoire d’Analyse et d’Architecture des Systèmes), CINaM (Centre Interdisciplinaire de Nanoscience de Marseille), CEA LITEN, CEA LETI

 Industriels : Air Liquide, Altatech, Annealsys, EDF, Encapsulix, STMicroelectronics, Versum Materials

Autres acteurs dans le monde :

Applied Materials Inc., ASM International N.V., Beneq, Jusung Engineering Co. Ltd., Intel, Lam Research Corporation, Oxford Instruments, Picosun, Samsung, Tokyo Electron Limited, ULVAC Technologies Inc., Ultratech/Cambridge Nanotech, Veeco Instruments Inc

Argonne National Laboratory, Colorado University, Eindhoven University, Ghent University, Helsinki University, Ikerbasque, IMEC, Stanford University, Technische Universität Dresden, Tyndall National Institute, VTT Technical Research Center of Finland, Yonsei University

Contact : [email protected] ; [email protected]

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-re253

CET ARTICLE SE TROUVE ÉGALEMENT DANS :

Accueil Ressources documentaires Matériaux Traitements des métaux Traitements de surface des métaux par voie sèche et en milieu fondu Atomic Layer Deposition (ALD) - Principes généraux, matériaux et applications Matériaux déposés par ALD

Accueil Ressources documentaires Sciences fondamentales Nanosciences et nanotechnologies Nanomatériaux : synthèse et élaboration Atomic Layer Deposition (ALD) - Principes généraux, matériaux et applications Matériaux déposés par ALD

Accueil Ressources documentaires Innovation Innovations technologiques Innovations en matériaux avancés Atomic Layer Deposition (ALD) - Principes généraux, matériaux et applications Matériaux déposés par ALD


Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

4. Matériaux déposés par ALD

Une grande palette de matériau est désormais accessible par ALD. Cette section dresse une liste non exhaustive : de nouveaux procédés étant régulièrement développés, cette liste est par essence obsolète (tableau 1).

4.1 Oxydes

Il existe de nombreux oxydes déposés par ALD. Dans la majorité des cas, la source d’oxygène est l’eau (H2O) et implique des réactions d’hydrolyse et de protonation de ligand. L’ozone (O3) ou O2-plasma sont également souvent utilisés et induisent des mécanismes réactionnels plus complexes. Enfin, d’autres exemples utilisent l’eau oxygénée (H2O2), un alcool, N2O ou même un précurseur métallique possédant également une source d’oxygène, tels que les composés alcoxydes ou carboxylates. Ces précurseurs ont l’avantage d’éviter des réactions d’oxydation du substrat . Les propriétés des oxydes déposés dépendent fortement de leur cristallinité, d’où l’importance de la contrôler (paragraphe 3.7).

L’alumine (Al2O3) est le matériau le plus étudié et le plus utilisé en ALD. Il est en général déposé à partir d’AlMe3 (TMA) et de H2O, et sa croissance étant quasi-idéale, il est considéré comme le système modèle de l’ALD. Il est généralement obtenu amorphe, son recuit...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Matériaux déposés par ALD
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - PUURUNEN (R.L.) -   « A short history of Atomic Layer Deposition : Tuomo Suntola’s Atomic Layer Epitaxy, »  -  Chem. Vap. Deposition, pp. 20, 332-344 (2014).

  • (2) - BELMONTE (T.) -   « Dépôts chimiques à partir d’une phase gazeuse, »  -  Techniques de l’ingénieur, p. M 1660 (2010).

  • (3) - PUURUNEN (R.L.) -   « Surface chemistry of atomic layer depostion : A case of study for the trimethylaluminium/ water process, »  -  J. Appl. Phys., vol. 97, p. 121301 (2005).

  • (4) - MIIKKULAINEN (V.), LESKELÄ (M.), RITALA (M.), PUURUNEN (R.L.) -   « Cristallinity of inorganic films grown by atomic layer deposition : Overview and general trends, »  -  J. Appl. Phys., vol. 113, p. 21301 (2013).

  • (5) - GEORGE (S.M.) -   « Atomic Layer Deposition : An overview, »  -  Chem. Rev., vol. 110, pp. 111-131 (2010).

  • ...

1 Sites Internet

ALD Pulse

http://aldpulse.com/ (page consultée le 2 juin 2016)

BALD Engineering

http://www.baldengineering.com/ (page consultée le 2 juin 2016)

Virtual Project on the History of ALD

http://www.vph-ald.com/ (page consultée le 2 juin 2016)

HAUT DE PAGE

2 Événements

AVS-ALD conference, congrès (conférences + salon) ayant lieu chaque année dans un continent différent.

http://www.avs.org/

Baltic-ALD conference, congrès ayant lieu une année sur deux dans une ville européenne

http://eurocvd-balticald2017.se/

HAUT DE PAGE

3 Brevets

Method for producing compound thin films, US. Patent 4 058 430 (1977).

HAUT DE PAGE

4 Annuaire

Organismes – Fédérations...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Nanosciences et nanotechnologies

(150 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS