Présentation

Article

1 - APPRENTISSAGE ARTIFICIEL

2 - APPLICATION À LA PRÉVISION DES REGROUPEMENTS DE SECTEURS AÉRIENS

3 - APPLICATION À LA PRÉVISION DE L’ALTITUDE DE L’AVION EN MONTÉE

4 - CONCLUSION

5 - GLOSSAIRE

Article de référence | Réf : RE183 v1

Application à la prévision des regroupements de secteurs aériens
Apprentissage artificiel et application en gestion du trafic aérien

Auteur(s) : David GIANAZZA

Date de publication : 10 janv. 2018

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article est une introduction concise aux notions fondamentales de l'apprentissage artificiel supervisé. Il présente également deux applications concrètes dans le domaine de la gestion du trafic aérien. La première consiste à apprendre un modèle de la charge de travail du contrôleur aérien ("aiguilleur du ciel"), à partir d'enregistrements de trajectoires d'avions et d'archives d'ouverture de secteurs de contrôle. La deuxième application s'intéresse à l'apprentissage de modèles de prévision de l'altitude de l'avion en montée.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Machine learning and applications to air traffic management

This article is a short introduction to some key notions in supervised machine learning. It also presents two applications to air traffic management. The first one consists in learning an air traffic controller workload model from recorded aircraft trajectories and past control sector openings. The second application is about learning models predicting the altitude of climbing aircraft.

Auteur(s)

  • David GIANAZZA : Enseignant-chercheur, habilité à diriger des recherches - École Nationale de l’Aviation Civile, Toulouse, France

INTRODUCTION

Points clés

Domaine : apprentissage artificiel et gestion du trafic aérien

Degré de diffusion de la technologie : croissance

Contact : [email protected]

L’apprentissage artificiel est un domaine scientifique en plein essor. Avec l’émergence de données massives (big data), il est devenu un outil indispensable pour pouvoir extraire de ces données des informations utiles ou des modèles de prévision, dans de nombreux domaines d’application.

Le domaine de l’apprentissage peut parfois paraître aux yeux du néophyte comme une véritable jungle, obscure et peu accessible. Le présent article ne prétend en aucun cas l’explorer exhaustivement, ni même superficiellement. L’objectif est de fournir au lecteur un point d’entrée et quelques outils (une machette, pour continuer notre analogie), pour pouvoir ensuite explorer par lui-même ce domaine, par des lectures spécialisées. Parmi les ouvrages de référence, citons les livres de T. Hastie et al. , celui de C. Bishop , et en français l’ouvrage de A. Cornuejols et L. Miclet .

Cette introduction à l’apprentissage artificiel est illustrée par deux applications à des problèmes de gestion du trafic aérien.

Dans la première, le modèle de prévision de la charge de travail des contrôleurs aériens (« aiguilleurs du ciel ») présenté est un réseau de neurones, appris à partir d’enregistrements de trajectoires d’avions et d’archives d’ouvertures de secteurs de contrôle. Une fois appris, ce modèle est combiné à une méthode de recherche arborescente pour prévoir les configurations optimales d’ouvertures de secteurs de contrôle aérien.

Dans la seconde application, l’apprentissage artificiel peut être utilisé soit pour prévoir directement l’altitude d’un avion en montée, soit pour estimer certains paramètres du modèle physique de l’avion, non disponibles dans les prédicteurs au sol, afin d’améliorer cette prévision d’altitude. Les éléments présentés dans cet article sont détaillés de façon plus approfondie dans .

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

Probability   |   forecast model   |   neuron network

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-re183

CET ARTICLE SE TROUVE ÉGALEMENT DANS :

Accueil Ressources documentaires Ingénierie des transports Systèmes aéronautiques et spatiaux Aéronef en vol et transport aérien Apprentissage artificiel et application en gestion du trafic aérien Application à la prévision des regroupements de secteurs aériens

Accueil Ressources documentaires Génie industriel Industrie du futur Industrie du futur : outils numériques Apprentissage artificiel et application en gestion du trafic aérien Application à la prévision des regroupements de secteurs aériens

Accueil Ressources documentaires Technologies de l'information Technologies logicielles Architectures des systèmes Intelligence artificielle Apprentissage artificiel et application en gestion du trafic aérien Application à la prévision des regroupements de secteurs aériens

Accueil Ressources documentaires Innovation Innovations technologiques Innovations en électronique et TIC Apprentissage artificiel et application en gestion du trafic aérien Application à la prévision des regroupements de secteurs aériens

Accueil Ressources documentaires Innovation Industrie du futur Industrie du futur : outils numériques Apprentissage artificiel et application en gestion du trafic aérien Application à la prévision des regroupements de secteurs aériens


Cet article fait partie de l’offre

Smart city - Ville intelligente et durable

(90 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais En anglais

2. Application à la prévision des regroupements de secteurs aériens

Après cette introduction à diverses notions de l’apprentissage artificiel, nous allons maintenant voir comment appliquer des méthodes d’apprentissage à un problème concret : la prévision des regroupements de secteurs aériens. Ce problème se subdivise en fait en deux sous-problèmes distincts.

  • Le premier est de modéliser la charge de travail du contrôleur aérien (« aiguilleur du ciel ») en fonction du trafic dans le secteur qu’il contrôle. Chacun de ces secteurs de contrôle, encore appelé secteur ATC (Air Traffic Control), est composé d’un ou plusieurs secteurs d’espace.

  • Le deuxième sous-problème consiste à trouver une partition optimale de l’espace en secteurs ATC, pour chaque instant de l’horizon de prévision, de façon à équilibrer la charge de travail et à respecter certaines contraintes opérationnelles, comme le nombre de postes de travail disponibles.

2.1 Description du problème

La gestion quotidienne d’une salle de contrôle aérien consiste à affecter les secteurs d’espace aux postes de travail (ou positions de contrôle) des contrôleurs aériens. L’ensemble des secteurs d’espace affectés à un même poste de travail constituent ce qu’on appelle un secteur de contrôle, ou secteur ATC.

Dans le cadre de la prévision à court-moyen terme, la problématique consiste à prévoir à l’avance combien de postes de travail sont nécessaires pour traiter le trafic prévu et quels secteurs de contrôle risquent d’être surchargés, afin de mettre en place des mesures préventives (ajustement de tour de service, régulation du trafic).

HAUT DE PAGE

2.2 Prévision de la charge de travail du contrôleur

HAUT DE PAGE

2.2.1 Choix de la variable réponse

Nous utilisons les archives d’ouvertures de secteurs, en faisant l’hypothèse que les décisions d’affectation des secteurs d’espace aux postes de travail sont liées à...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Smart city - Ville intelligente et durable

(90 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Application à la prévision des regroupements de secteurs aériens
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - JAMES (G.), WITTEN (D.), HASTIE (T.), TIBSHIRANI (R.) -   An introduction to statistical learning,  -  volume 6. Springer (2013).

  • (2) - HASTIE (T.), TIBSHIRANI (R.), FRIEDMAN (J.H.) -   The Elements of Statistical Learning.  -  Springer Series in Statistics. Springer New York Inc., New York, NY, USA (2001).

  • (3) - BISHOP (C.M.) et al -   Pattern recognition and machine learning,  -  volume 4. springer New York (2006).

  • (4) - CORNUÉJOLS (A.), MICLET (L.) -   Apprentissage artificiel : concepts et algorithmes.  -  Éditions Eyrolles (2011).

  • (5) - GIANAZZA (D.) -   Méthodes d’optimisation et d’apprentissage appliquées à des problèmes de trafic aérien.  -  PhD thesis, Institut National Polytechnique de Toulouse. Thèse d’habilitation (2016).

  • ...

1 Événements

USA/Europe ATM R&D seminar

http://www.atmseminarus.org/

International Conference on Research in Air Transportation

http://icrat.org/icrat/

HAUT DE PAGE

2 Sites Internet

IEEE Transactions on Intelligent Transportation Systems

https://www.ieee-itss.org

Transportation Research

https://www.journals.elsevier.com

MOOC Statistical Learning (Stanford on-line)

https://lagunita.stanford.edu

MOOC Machine Learning (Stanford University – Coursera)https://fr.coursera.org

MOOC Machine Learning (Georgia Tech – Udacity)

https://eu.udacity.com

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Smart city - Ville intelligente et durable

(90 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS