Présentation
EnglishRÉSUMÉ
Après un bref rappel sur les principes clés de l’analyse de cycle de vie (ACV), cet article montre comment cette méthode permet d’évaluer la performance environnementale des véhicules électriques (VE) et de la comparer à celle des véhicules thermiques. Les résultats présentés confirment la pertinence des VE sur l’indicateur « Effet de serre » en France, ainsi que sur d’autres indicateurs, mais soulignent aussi des transferts d’impacts. L’article détaille également les évolutions méthodologiques qu’appelle l’ACV des véhicules électriques, et envisage enfin les pistes d’action écologiques à la portée des industriels et des pouvoirs publics pour la mobilité électrique.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Hélène TEULON : Fondatrice du cabinet Gingko 21 - Gingko 21, Paris, France
INTRODUCTION
Depuis quelques années, en France comme dans le monde, l’électrification du parc automobile connaît une croissance accélérée. Cela répond aux besoins de décarboner massivement l’économie, et se réalise sous la pression conjointe des réglementations et des attentes du public. Il est clair que le véhicule électrique élimine de fait les émissions de la combustion en phase d’usage, mais constitue-t-il pour autant une solution crédible pour la mobilité décarbonée ? En d’autres termes, le véhicule électrique apporte-t-il un véritable bénéfice environnemental ? Et si oui, est-ce bien vrai dans tous les contextes ? Y aurait-il des arbitrages selon les impacts considérés ?
L’analyse de cycle de vie (ACV) est l’outil idéal pour traiter ces questions. Et réciproquement, l’exemple des véhicules électriques est souvent utilisé pour expliquer au grand public les fondements de l’ACV, avec les transferts d’impacts entre étapes du cycle de vie : un véhicule « zéro émission » certes à l’usage, mais pour lequel il faut bien produire l’électricité pour l’alimenter, et en amont des batteries qu’il faudra recycler en fin de vie. Ce cas d’école simple et connu de tous permet d’illustrer parfaitement la notion de « cycle de vie », dont la prise en compte intégrale, de l’extrême amont jusqu’à l’extrême aval, permet seule de poser un diagnostic valide sur l’impact environnemental du véhicule, et de le comparer sur une base fiable avec d’autres types de véhicules, qu’ils soient thermiques, hybrides ou à hydrogène…
Le sujet intéresse également les pouvoirs publics, les professionnels et les experts, prenons en pour preuve la large littérature disponible sur le sujet, sur tous les continents. En France, l’Ademe, soucieuse d’éclairer les choix du gouvernement, a ainsi commandé une étude d’ACV comparative de véhicules électriques et de véhicules thermiques, publiée en 2013 . Une dizaine d’années plus tard, les résultats en sont encore largement valides, car l’étude était prospective et les hypothèses ont été dans l’ensemble confirmées.
C’est également un sujet d’étude pour les professionnels de l’industrie automobile, qui réalisent depuis de nombreuses années des ACV de leurs véhicules, soit pour communiquer auprès de leurs clients, soit pour orienter les choix de conception dans une perspective de réduction des impacts environnementaux – on parle alors d’éco-conception –, soit enfin plus récemment pour évaluer leur performance environnementale globale d’entreprise sur un périmètre incluant l’usage des véhicules qu’ils mettent sur le marché, c’est ce que l’on appelle le « scope 3 » du bilan carbone.
C’est enfin un sujet d’approfondissement méthodologique pour les experts en ACV, qui sont confrontés à travers l’ACV du véhicule électrique à bon nombre de sujets de recherche actuels en ACV.
Après un bref rappel sur l’ACV dont pourront s’affranchir les lecteurs déjà compétents sur le sujet, cet article traite tout d’abord de la méthodologie spécifique à la réalisation d’une ACV pour un véhicule électrique, puis des résultats des ACV réalisées dans ce domaine. Il cherche ensuite à éclairer les problématiques pouvant faire l’objet d’évolutions méthodologiques au cours des prochaines années, et se conclut sur les décisions stratégiques que l’on pourrait tirer des résultats de ces travaux, tant au niveau de l’Etat qu’à celui des entreprises.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Environnement - Sécurité > Environnement > Système de management environnemental produits et ACV > Analyse de cycle de vie des véhicules électriques > Quelles recommandations pour l’action ?
Accueil > Ressources documentaires > Ingénierie des transports > Véhicule et mobilité du futur > Enjeux énergétiques et environnementaux du transport routier > Analyse de cycle de vie des véhicules électriques > Quelles recommandations pour l’action ?
Cet article fait partie de l’offre
Innovations technologiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Quelles recommandations pour l’action ?
5.1 Résumé des éclairages fournis par les ACV de véhicules électriques
L’analyse de cycle de vie permet d’évaluer les points forts et les points faibles des véhicules électriques, comparés à d’autres types de motorisation. Attention toutefois aux conclusions que l’on peut tirer d’une étude ACV comparant des véhicules électriques et thermiques : chaque étude concerne un type de véhicule particulier, et la généralisation des conclusions à d’autres types de véhicules nécessiterait une adaptation.
De grandes tendance peuvent toutefois être observées :
-
l’ACV permet notamment de valider la pertinence des VE pour limiter les émissions de gaz à effet de serre (GES), à la condition d’utiliser un mix électrique faiblement carboné, c’est-à-dire renouvelable ou nucléaire ;
-
elle met également en évidence les déplacements de pollution en amont de la filière, sur la production des batteries et celle de l’électricité. Cela suggère que des véhicules plus petits, à faible autonomie, seraient encore moins impactants. Dans cette perspective, c’est tout le système de mobilité qu’il faut reconcevoir ;
-
cela implique également que les VE doivent être utilisés longtemps et/ou intensément, de façon à amortir l’impact de la production des batteries. Ainsi, contrairement à certaines attentes, l’application en tant que « second véhicule du foyer » n’est pas le meilleur scénario, par manque d’utilisation, sauf à réduire l’autonomie et la taille de la batterie ;
-
des applications en auto-partage ou pour des véhicules de flottes d’entreprise semblent plus favorables ;
-
par ailleurs, pour limiter l’impact sur l’acidification et les ressources critiques, il est essentiel de valoriser les batteries en fin de vie. Des études ACV sur différentes filières de recyclage de batteries ont été lancées ;
-
enfin, concernant la réduction du bruit en ville, et celle des émissions polluantes locales, l’impact des VE ne sera sensible que sur des zones dédiées aux mobilités électriques ...
Cet article fait partie de l’offre
Innovations technologiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Quelles recommandations pour l’action ?
BIBLIOGRAPHIE
-
(1) - HAWKINS (T.R.), SINGH (B.), MAJEAU-BETTEZ (G.), STRØMMAN (A.H.) - Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. - https://doi.org/10.1111/j.1530-9290.2012.00532.x (2013).
-
(2) - NOTTER (D.A.), GAUCH (M.), WIDMER (R.), WÄGER (P.), STAMP (A.), ZAH (R.), ALTHAUS (H.-J.) - * - . – Contribution of Li-ion batteries to the environmental impact of electric vehicles (2010).
-
(3) - SZCZECHOWICZ (E.), DEDERICHS (T.), SCHNETTLER (A.) - * - . – Regional assessment of local emissions of electric vehicles using traffic simulations for a use case in Germany (2012).
-
(4) - SHARMA (R.), MANZIE (C.), BESSEDE (M.), CRAWFORD (R.H.), BREAR (M.J.) - * - . – Conventional, hybrid and electric vehicles for Australian driving conditions. Part 2 : Life cycle CO2-e emissions (2013).
-
(5) - BOUTER (A.), HACHE (E.), TERNEL (C.), BEAUCHET (S.) - Comparative environmental life cycle assessment of several powertrain types for cars and buses in France for two driving cycles : “worldwide harmonized light vehicle test procedure” cycle...
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Innovations technologiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive