Présentation

Article

1 - DIFFÉRENTES APPROCHES DE MODÉLISATION

  • 1.1 - Approches basées sur un modèle
  • 1.2 - Apprentissage statistique
  • 1.3 - Modélisation hybride
  • 1.4 - Lien avec les solveurs numériques classiques

2 - MODÈLES HYBRIDES : AVANTAGES ET CHAMPS D’APPLICATION

  • 2.1 - Problèmes fondamentaux
  • 2.2 - Gains attendus des modèles hybrides

3 - INTÉGRATION DE CONNAISSANCE PHYSIQUE DANS LES MODÈLES D’APPRENTISSAGE

4 - APPLICATION À LA PRÉVISION PHOTOVOLTAÏQUE PAR IMAGES AU SOL

5 - CONCLUSION ET PERSPECTIVES

6 - GLOSSAIRE

7 - SIGLES, NOTATIONS ET SYMBOLES

Article de référence | Réf : IN703 v1

Conclusion et perspectives
Apprentissage statistique inspiré par la physique - Principes et application à la prévision d’énergie photovoltaïque

Auteur(s) : Vincent LE GUEN

Date de publication : 10 déc. 2023

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Cet article traite de l’apprentissage statistique inspiré par la physique qui est une technique exploitant de la connaissance physique potentiellement incomplète et des données pour modéliser des systèmes physiques. Ces modèles dits "hybrides" permettent d’accélérer les simulations numériques, d’utiliser les données de manière plus efficace et de fournir des prédictions plus interprétables et qui généralisent mieux. Cet article présente également une application industrielle à EDF pour la prévision à court terme de la production photovoltaïque à l’aide de caméras au sol.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Vincent LE GUEN : Chercheur - EDF R&D, Chatou - SINCLAIR AI Lab, Palaiseau

INTRODUCTION

La recherche scientifique a été profondément bouleversée au cours du XXe siècle par le développement de l’informatique et de l’intelligence artificielle (IA). Le paradigme traditionnel de mise en équations théoriques et validation expérimentale a été appuyé par le recours à la simulation numérique qui est devenu incontournable pour analyser des systèmes complexes en physique, ingénierie, biologie, etc.

Avec l’automatisation des expériences et la multiplication exponentielle du nombre de capteurs, un déluge de données d’observation sont désormais rendues disponibles. Pour extraire de l’information pertinente de ces données et alimenter la découverte scientifique, l’apprentissage statistique (machine learning), en particulier l’apprentissage profond (deep learning), est particulièrement attrayant. L’apprentissage profond a permis au cours de la dernière décennie des progrès spectaculaires dans les domaines de la vision par ordinateur, du traitement du langage naturel ou des jeux, grâce à sa capacité à extraire des relations non linéaires complexes à partir de données massives et à construire des modèles prédictifs. Dans le domaine industriel, ces méthodes d’IA ouvrent la voie au développement de jumeaux numériques, permettant de simuler des systèmes complexes beaucoup plus rapidement qu’avec les techniques de résolution traditionnelles et d’extrapoler les résultats à de nouvelles configurations.

Toutefois, les méthodes d’apprentissage profond nécessitent de très grandes bases de données étiquetées de bonne qualité pour l’entraînement, ce qui n’est pas toujours possible pour certaines expériences scientifiques très coûteuses. En outre, les méthodes purement basées sur les données sont souvent considérées comme des boîtes noires peu explicables, souffrent de problèmes de généralisation en dehors de leur domaine d’entraînement et peuvent produire des prédictions physiquement incohérentes.

Introduire de la connaissance physique dans les méthodes d’apprentissage est une voie très prometteuse pour résoudre ces problèmes. On peut définir l’apprentissage statistique inspiré par la physique (physics-inspired machine learning) comme un paradigme visant à construire des modèles qui exploitent à la fois des données d’observation et de la connaissance physique a priori pour résoudre des tâches qui sont basées sur un processus physique sous-jacent. Ces idées d’hybridation sont assez anciennes mais ont connu un fort regain d’intérêt avec les succès de l’apprentissage profond moderne.

Cet article fait une revue des connaissances actuelles sur les méthodes d’hybridation entre apprentissage statistique et connaissance a priori, en se concentrant sur l’étude de phénomènes physiques. Les principales stratégies d’hybridation sont présentées et les avantages et domaines d’applications de ces méthodes sont discutés. L’article présente également une application industrielle à EDF pour la prévision de la production photovoltaïque à partir de caméras au sol, pour laquelle un modèle d’apprentissage profond hybride a été développé. Enfin, l’article ouvre sur les principaux défis scientifiques et industriels à venir de ces méthodes.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-in703


Cet article fait partie de l’offre

Innovations technologiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais English

5. Conclusion et perspectives

Cet article a présenté les principes fondamentaux de l'apprentissage statistique inspiré par la physique. Ce domaine est très vaste et se caractérise par l’utilisation de concepts de la physique conjointement avec des méthodes d’apprentissage à l’aide de données pour traiter des problèmes physiques. Ces méthodes dites « hybrides » sont un sujet émergent qui suscite un intérêt majeur pour de nombreuses communautés scientifiques. La physique peut être incorporée dans l’apprentissage de modèles de plusieurs manières : par une sélection appropriée des données d’apprentissage, sous la forme de contraintes douces dans la fonction de perte, comme des contraintes dures dans les architectures des réseaux de neurones ou de manière modulaire. Du point de vue apprentissage, ces contraintes physiques permettent de développer des modèles plus interprétables qui se conforment aux lois physiques et qui restent robustes en présence de données bruitées. Cela se traduit typiquement par une plus grande efficacité dans l’utilisation des données et de meilleures performances d’extrapolation au-delà du domaine d’apprentissage. Ces modèles hybrides ont également l’avantage d’être très flexibles et de pouvoir incorporer plusieurs niveaux de connaissance physique.

L’apprentissage statistique inspiré par la physique est un champ d’étude relativement récent et il reste de nombreux défis à relever, notamment :

  • jeux de données comparaison (benchmarks) : les succès de l’apprentissage profond dans des domaines tels que la vision par ordinateur ou le traitement du langage sont en grande partie dus à l’existence de vastes bases de données étiquetées et standardisées, librement accessibles (par exemple le jeu de données ImageNet en classification d’images). Elles permettent d’encourager l’émulation entre équipes de recherche et d’évaluer précisément les avancées algorithmiques. Ce type de jeu de données de référence est manquant en raison de la diversité des contextes physiques. Si un tel jeu était construit, avec un faible nombre d’équations représentatives et éventuellement plusieurs niveaux de connaissance physique, cela pourrait accélérer grandement la recherche dans ce domaine ;

  • problèmes multiéchelle et multiphysique : malgré les succès...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Innovations technologiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion et perspectives
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ORESHKIN (B.N.), CARPOV (D.), CHAPADOS (N.), BENGIO (Y.) -   N-BEATS : Neural basis expansion analysis for interpretable time series forecasting.  -  International Conference on Learning Representations (2020).

  • (2) - HASTIE (T.), TIBSHIRANI (R.), FRIEDMAN (J.) -   The elements of statistical learning : data mining, inference, and prediction.  -  New York, Springer (2009).

  • (3) - GOODFELLOW (I.), BENGIO (Y.), COURVILLE (A.) -   Deep Learning.  -  MIT Press (2016).

  • (4) - BOCQUET (M.), BRAJARD (J.), CARRASSI (A.), BERTINO (L.) -   Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models.  -  Nonlinear Processes in Geophysics, 26(3), p. 143-162 (2019).

  • (5) - THOMPSON (M.L.), KRAMER (M.A.) -   Modeling chemical processes using prior knowledge and neural networks.  -  AIChE Journal, 40(8), p. 1328-1340 (1994).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Innovations technologiques

(177 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS