Présentation
En anglaisRÉSUMÉ
Cet article traite de l’apprentissage statistique inspiré par la physique qui est une technique exploitant de la connaissance physique potentiellement incomplète et des données pour modéliser des systèmes physiques. Ces modèles dits "hybrides" permettent d’accélérer les simulations numériques, d’utiliser les données de manière plus efficace et de fournir des prédictions plus interprétables et qui généralisent mieux. Cet article présente également une application industrielle à EDF pour la prévision à court terme de la production photovoltaïque à l’aide de caméras au sol.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article deals with physics-informed machine learning, which is a technique leveraging prior physical knowledge and data to describe physical processes. These hybrid models enable to accelerate numerical simulations, to be more data efficient when learning, to provide more interpretable predictions compliant with physical laws that generalize better. This article also presents an industrial application at EDF on short-term solar energy forecasting based on ground-based cameras.
Auteur(s)
-
Vincent LE GUEN : Chercheur - EDF R&D, Chatou - SINCLAIR AI Lab, Palaiseau
INTRODUCTION
La recherche scientifique a été profondément bouleversée au cours du XXe siècle par le développement de l’informatique et de l’intelligence artificielle (IA). Le paradigme traditionnel de mise en équations théoriques et validation expérimentale a été appuyé par le recours à la simulation numérique qui est devenu incontournable pour analyser des systèmes complexes en physique, ingénierie, biologie, etc.
Avec l’automatisation des expériences et la multiplication exponentielle du nombre de capteurs, un déluge de données d’observation sont désormais rendues disponibles. Pour extraire de l’information pertinente de ces données et alimenter la découverte scientifique, l’apprentissage statistique (machine learning), en particulier l’apprentissage profond (deep learning), est particulièrement attrayant. L’apprentissage profond a permis au cours de la dernière décennie des progrès spectaculaires dans les domaines de la vision par ordinateur, du traitement du langage naturel ou des jeux, grâce à sa capacité à extraire des relations non linéaires complexes à partir de données massives et à construire des modèles prédictifs. Dans le domaine industriel, ces méthodes d’IA ouvrent la voie au développement de jumeaux numériques, permettant de simuler des systèmes complexes beaucoup plus rapidement qu’avec les techniques de résolution traditionnelles et d’extrapoler les résultats à de nouvelles configurations.
Toutefois, les méthodes d’apprentissage profond nécessitent de très grandes bases de données étiquetées de bonne qualité pour l’entraînement, ce qui n’est pas toujours possible pour certaines expériences scientifiques très coûteuses. En outre, les méthodes purement basées sur les données sont souvent considérées comme des boîtes noires peu explicables, souffrent de problèmes de généralisation en dehors de leur domaine d’entraînement et peuvent produire des prédictions physiquement incohérentes.
Introduire de la connaissance physique dans les méthodes d’apprentissage est une voie très prometteuse pour résoudre ces problèmes. On peut définir l’apprentissage statistique inspiré par la physique (physics-inspired machine learning) comme un paradigme visant à construire des modèles qui exploitent à la fois des données d’observation et de la connaissance physique a priori pour résoudre des tâches qui sont basées sur un processus physique sous-jacent. Ces idées d’hybridation sont assez anciennes mais ont connu un fort regain d’intérêt avec les succès de l’apprentissage profond moderne.
Cet article fait une revue des connaissances actuelles sur les méthodes d’hybridation entre apprentissage statistique et connaissance a priori, en se concentrant sur l’étude de phénomènes physiques. Les principales stratégies d’hybridation sont présentées et les avantages et domaines d’applications de ces méthodes sont discutés. L’article présente également une application industrielle à EDF pour la prévision de la production photovoltaïque à partir de caméras au sol, pour laquelle un modèle d’apprentissage profond hybride a été développé. Enfin, l’article ouvre sur les principaux défis scientifiques et industriels à venir de ces méthodes.
KEYWORDS
physics | deep learning | machine learning | hybrid models
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Environnement - Sécurité > Métier : responsable environnement > Innovations en énergie et environnement > Apprentissage statistique inspiré par la physique - Principes et application à la prévision d’énergie photovoltaïque > Glossaire
Accueil > Ressources documentaires > Technologies de l'information > Technologies logicielles Architectures des systèmes > Intelligence artificielle > Apprentissage statistique inspiré par la physique - Principes et application à la prévision d’énergie photovoltaïque > Glossaire
Cet article fait partie de l’offre
Innovations technologiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Glossaire
Apprentissage profond ; deep learning
Procédé d'apprentissage automatique utilisant des réseaux de neurones possédant plusieurs couches de neurones cachées. Ces algorithmes possédant de très nombreux paramètres, ils demandent un nombre très important de données afin d'être entraînés.
Biais inductif ; inductive bias
Hypothèse ou information a priori qu’un algorithme d’apprentissage utilise pour prédire la sortie d’une donnée d’entrée qu’il n’a jamais rencontrée.
Contrainte douce/dure ; soft/hard constraint
Lorsque l’on incorpore de la connaissance physique dans un modèle d’apprentissage, une contrainte douce encourage le modèle à respecter la contrainte mais elle peut tout de même être violée. Au contraire, une contrainte dure est automatiquement vérifiée par le modèle.
Différentiation automatique ; automatic differentiation
La différentiation automatique est une technique qui permet d'ajouter aux calculs effectués par un code des calculs de dérivées. Cette technique est basée sur la modélisation d'un code par une composition de fonctions élémentaires. La différentiation du code revient alors à l'application de la règle de dérivation des fonctions composées.
Métamodèle, modèle de substitution ; metamodel, surrogate model
Un métamodèle correspond à un modèle informatique approximé qui permet de répliquer les sorties d’un procédé qui peut être complexe à mettre en œuvre.
Surapprentissage ; overfitting
Il y a surapprentissage d’un modèle quand celui-ci correspond de trop près aux données d’apprentissage et généralise mal sur de nouvelles données.
Cet article fait partie de l’offre
Innovations technologiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Glossaire
BIBLIOGRAPHIE
-
(1) - ORESHKIN (B.N.), CARPOV (D.), CHAPADOS (N.), BENGIO (Y.) - N-BEATS : Neural basis expansion analysis for interpretable time series forecasting. - International Conference on Learning Representations (2020).
-
(2) - HASTIE (T.), TIBSHIRANI (R.), FRIEDMAN (J.) - The elements of statistical learning : data mining, inference, and prediction. - New York, Springer (2009).
-
(3) - GOODFELLOW (I.), BENGIO (Y.), COURVILLE (A.) - Deep Learning. - MIT Press (2016).
-
(4) - BOCQUET (M.), BRAJARD (J.), CARRASSI (A.), BERTINO (L.) - Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models. - Nonlinear Processes in Geophysics, 26(3), p. 143-162 (2019).
-
(5) - THOMPSON (M.L.), KRAMER (M.A.) - Modeling chemical processes using prior knowledge and neural networks. - AIChE Journal, 40(8), p. 1328-1340 (1994).
-
...
Cet article fait partie de l’offre
Innovations technologiques
(177 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive