Présentation
RÉSUMÉ
L’apprentissage profond a provoqué une révolution technologique dans l’analyse et la génération d’images à deux dimensions, permettant le développement de nouvelles applications. Dans cet article, il est question de l’application de ces méthodes aux données tridimensionnelles, comme les tomographies utilisées en imagerie médicale ou dans l’étude de matériaux. L’analyse de données 3D, mais aussi leur génération, sont abordées. Les difficultés théoriques et pratiques de ces approches sont expliquées et leurs perspectives développées.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Petr DOKLADAL : Maître de recherche - Mines Paris – Université PSL, Centre de Morphologie mathématique, Fontainebleau, France
-
Étienne DECENCIÈRE : Directeur de recherche - Mines Paris – Université PSL, Centre de Morphologie mathématique, Fontainebleau, France
INTRODUCTION
L’apprentissage profond (deep learning, en anglais) est une discipline qui fait appel aux réseaux de neurones artificiels pour apprendre automatiquement des transformations. Depuis une dizaine d’années, cette discipline a bouleversé différents domaines des sciences des données, comme l’analyse d’images ou le traitement du langage naturel, au point de provoquer un renouveau de l’intelligence artificielle (IA). Cette révolution technologique a poussé des grandes sociétés à recruter à prix d’or des chercheurs et des ingénieurs pour constituer ou renforcer des équipes en IA. De nombreuses start-ups ont aussi été créées pour développer des solutions à des problèmes qui étaient considérés, il y a seulement quelques années, comme hors de portée.
Les images tridimensionnelles (3D) occupent aussi une place croissante dans les applications industrielles, grâce aux progrès de méthodes d’acquisition de plus en plus performantes, comme la tomodensitométrie par rayons X, l’imagerie par résonance magnétique ou la télédétection par laser (plus communément connue sous l'appellation LiDAR, de l’anglais Light Detection And Ranging). Notons qu’un autre domaine de recherche porte sur l’extraction d’informations 3D à partir d’images 2D.
C’est donc naturellement que des applications de l’apprentissage profond pour les images 3D ont été développées ces dernières années. Cet article a pour objectif de présenter de façon synthétique et accessible ces méthodes. Pour cela, nous commençons par introduire les différentes représentations 3D considérées : nous nous limitons ici aux représentations sous forme de tableau à trois dimensions ou de graphe. Nous présentons ensuite brièvement les bases de l’apprentissage profond pour les images et les graphes, puis nous expliquons comment elles sont appliquées aux images 3D. Nous abordons dans la section suivante un sujet plus prospectif : la génération d’images 3D. Enfin, avant de conclure, nous discutons des perspectives et des défis de ces méthodes.
le lecteur trouvera en fin d’article un glossaire des termes et expressions importants de l’article, ainsi qu’un tableau des sigles, notations et symboles utilisés tout au long de l’article.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Le traitement du signal et ses applications > Traitement du signal : bases théoriques > Apprentissage profond pour les images tridimensionnelles > Génération de données 3D
Accueil > Ressources documentaires > Électronique - Photonique > Technologies radars et applications > Géomatique > Apprentissage profond pour les images tridimensionnelles > Génération de données 3D
Accueil > Ressources documentaires > Technologies de l'information > Technologies logicielles Architectures des systèmes > Intelligence artificielle > Apprentissage profond pour les images tridimensionnelles > Génération de données 3D
Accueil > Ressources documentaires > Technologies de l'information > Technologies radars et applications > Géomatique > Apprentissage profond pour les images tridimensionnelles > Génération de données 3D
Cet article fait partie de l’offre
Innovations technologiques
(178 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Génération de données 3D
S’il est facile, pour un humain, de déduire la forme 3D d’un objet à partir d’une seule perspective, c’est extrêmement difficile pour un algorithme. En effet, contrairement à la vision par ordinateur, la vision humaine est intensément aidée par la mémoire et l’intelligence.
Or, il y a une demande pour l’extraction automatique d’objets 3D de haute qualité à partir d’une seule photographie. Les applications sont nombreuses, allant de la manipulation d’images à la réalité virtuelle et augmentée, en passant par l’impression 3D. Par exemple, dans le commerce électronique, il serait très intéressant de pouvoir récupérer automatiquement et rapidement le modèle 3D d’un produit commercial à partir de sa photographie (par exemple, dans la publicité). De plus, la géométrie et la texture doivent être de haute qualité pour être utiles. Dans ce qui suit, nous présenterons des travaux qui ont permis des avancées qualitatives vers cet objectif.
Limitées par la nature du réseau neuronal profond, les premières méthodes représentent généralement une forme 3D en grille de voxels ou en nuage de points et il n’est pas trivial de les convertir en un maillage prêt à l’emploi. Les méthodes ultérieures ont généré directement un maillage 3D triangulaire correct. Une étape qualitative suivante consistait en la génération de maillages 3D composés de primitives éditables par l’homme. Une étape nouvelle a été franchie avec un transformer capable de produire des maillages polygonaux où l’objet 3D généré est très proche d’un modèle CAO généré par un designer humain.
Une première question à se poser est comment un modèle peut représenter un objet 3D ? Selon Girdhar et al. , une bonne représentation doit être générative en 3D dans le sens où elle peut créer de nouveaux objets 3D. Elle doit aussi être prédictive à partir de...
Cet article fait partie de l’offre
Innovations technologiques
(178 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Génération de données 3D
BIBLIOGRAPHIE
-
(1) - ROSENBLATT (F.) - The perceptron : A probabilistic model for information storage and organization in the brain. - Psychol. Rev., vol. 65, n° 6, p. 386-408, DOI : 10.1037/h0042519 (1958).
-
(2) - AZENCOTT (C.-A.) - Introduction au machine learning. - Dunod (2019).
-
(3) - CHOLLET (F.) - Deep Learning with Python. - Second Edition, Simon and Schuster (2021).
-
(4) - LECUN (Y.), BENGIO (Y.), HINTON (G.) - Deep learning. - Nature, vol. 521, n° 7553, p. 436-444 (2015).
-
(5) - CYBENKO (G.) - Approximations by superpositions of a sigmoidal function. - Math. Control Signals Syst., vol. 2, p. 183-192 (1989).
-
(6) - FUKUSHIMA (K.) - Neocognitron : A self-organizing neural network model for a mechanism of pattern...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Cet article fait partie de l’offre
Innovations technologiques
(178 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive