Présentation
EnglishRÉSUMÉ
La simulation numérique est devenue une technique largement utilisée par les ingénieurs pour concevoir, optimiser et qualifier de nombreux produits et systèmes. Bénéficiant de développements académiques industriels, la simulation ne cesse de se perfectionner. Elle intègre en outre de plus en plus fréquemment des recherches et innovations issues de l’apprentissage machine. Cet article propose un état des lieux succinct du couplage de ces deux techniques numériques et de leurs usages et applications possibles.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Jean-François SIGRIST : Ingénieur-chercheur, journaliste scientifique - eye-π – Tours, France
INTRODUCTION
La simulation numérique s’est largement diffusée dans l’industrie dans les deux décennies passées et son usage concerne de nombreuses applications en sciences de l’ingénieur (mécanique, thermique, acoustique, hydrodynamique, etc.). Elle bénéficie d’innovations constantes issues de recherches académiques dans des domaines variés (modélisation physique, mathématiques appliquées, informatique et algorithmique, etc.) : les simulations peuvent rendre compte de phénomènes physiques de plus en plus complexes (comme des couplages multiphysiques, des comportements non linéaires, etc.) avec précision et efficacité croissantes. Les calculs contribuent à optimiser la conception de nombreux produits et à en améliorer les performances de fiabilité et de durabilité. Les simulations numériques rencontrent cependant diverses limitations qui brident dans certains cas leurs usages, en particulier en matière de robustesse, de besoins en ressources computationnelles (calcul, stockage, etc.) et de consommation d’énergie.
Aux côtés de la simulation numérique se développent des techniques d’apprentissage automatique dont les capacités prédictives deviennent très intéressantes : fondés sur la disponibilité croissante de données (issues de résultats d’essais, de mesures, de capteurs, de calculs, etc.), les algorithmes de machine learning permettent d’élaborer des modèles numériques complétant les modèles utilisés pour la simulation de la physique.
Cet article, qui s’adresse principalement à de jeunes ingénieurs et chercheurs en simulation numérique, propose un état de l’art succinct sur le couplage entre les techniques de simulation numérique et d’apprentissage machine, qui devient l’une des voies les plus intéressantes pour dépasser certaines limitations actuelles des calculs et faire évoluer la simulation numérique.
Le lecteur trouvera ces références dans la rubrique « Pour en savoir plus » associée à cet article. Une bibliographie supplémentaire et des liens vers des sites internet lui proposent des ressources utiles afin d’approfondir ses connaissances sur le sujet.
MOTS-CLÉS
intelligence artificielle simulation numérique calcul scientifique Apprentissage machine modélisation mathématique
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Management et ingénierie de l'innovation
(437 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Usages de l’apprentissage machine en simulation numérique
L’exemple proposé à la section précédente montre que modélisation et analyse de données vont de pair : en ce sens, le couplage entre modèles et algorithmes d’analyse de données (au sens large) fait partie intégrante de la simulation numérique. Cependant, le spectaculaire développement des techniques d’apprentissage machine permet des applications plus variées de ces algorithmes (figure 29 en annexe). On donne dans les sections suivantes un aperçu des utilisations et hybridations possibles de la simulation numérique et de l’apprentissage machine. La plupart des exemples proposés sont issus de la simulation numérique en mécanique des fluides et des structures , qui intéressent largement les ingénieurs de l’industrie, mais des approches similaires se rencontrent pour des modélisations et simulations appliquées à d’autres problématiques (comme la mécanique quantique ...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Management et ingénierie de l'innovation
(437 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Usages de l’apprentissage machine en simulation numérique
BIBLIOGRAPHIE
-
(1) - SIGRIST (J.-F.) - Numerical Simulation, an Art of Prediction. - Volume 1: Theory. ISTE/Wiley (2020).
-
(2) - SIGRIST (J.-F.) - Numerical Simulation, an Art of Prediction. - Volume 2: Examples. ISTE/Wiley (2020).
-
(3) - DOKAINISH (M.A.), SUBBARA (K.) - A survey of direct time-integration methods in computational structural dynamics. - I. Explicit methods, Computers and Structures, 32, 1371-1386 (1989).
-
(4) - SUBBARA (K.), DOKAINISH (M.A.) - A survey of direct time-integration methods in computational structural dynamics. - II. Implicit methods, Computers and Structures, 32, 1387-1401 (1989).
-
(5) - BODIN (F.) - La convergence du calcul scientifique et de l’analyse de données - In: BOUZEGHOUB (M.) et MOSSER (R.), Les Big Data à découvert. CNRS Éditions (2017).
-
(6)...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
ABAQUS
ANSYS
CASTEM
Code_Aster
Code_Saturne
MATLAB
https://fr.mathworks.com/products/matlab.html
OpenFoam
PyTorch
Scilab
SOFA
https://www.sofa-framework.org
TensorFlow
HAUT DE PAGELaboratoires, écoles d’ingénieurs, université (liste non exhaustive)
Centrale Supelec
https://www.centralesupelec.fr
École Centrale de Nantes
ENSEIRB-MATMECA
https://enseirb-matmeca.bordeaux-inp.fr/fr
ENSTA ParisTech
GENCI
INRIA
...
Cet article fait partie de l’offre
Management et ingénierie de l'innovation
(437 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Management et ingénierie de l'innovation
(437 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive