Présentation
En anglaisRÉSUMÉ
Les liens entre lumière et insectes sont complexes. La lumière est essentielle à la vie, mais peut aussi s'avérer dangereuse, voire mortelle. Pour gérer ces échanges électromagnétiques entre le monde extérieur et l'organisme, la nature a développé aux interfaces des arthropodes (ailes et cuticule) des structures adaptées aux différentes contraintes. Cet article traite de l'interaction insecte - « lumière entrante », de la façon dont est optimisée l'absorption, et la surchauffe évitée. Il décrit le profil « capteur d'énergie solaire » de l'insecte. Dans une seconde partie, l’article aborde la lumière sortante, c'est-à-dire l'insecte « LED ». Par fluorescence ou bioluminescence, de nombreux insectes émettent de la lumière et ont beaucoup à nous apprendre sur son extraction ! Des pistes ou des réalisations bio-inspirées sont présentées.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The relationship between light and insects, like all other living organisms, is complex. Light is essential to life, but can also be dangerous, even deadly. To manage these electromagnetic interactions between the outer world and the body of arthropods in particular, nature has developed structures at the interfaces (wings and cuticle) adapted to different constraints.We deal first with incoming light, i.e. the “solar absorber” insect: how it optimizes the absorption, how it prevents overheating, etc. In a second part, we discuss outgoing light, or the “LED” insect. Many insects emit light by fluorescence or bioluminescence, and have much to teach us about its extraction. Bio-inspired avenues of research and achievements are presented.
Auteur(s)
-
Serge BERTHIER : Professeur, Université Paris Diderot (Paris, France), Université de Namur Belgique - Member of the UNESCO-UNISA chair in Nanotechnology, Cap Town, Afrique du Sud - Institut des nanosciences de Paris, UMR 7588, CNRS, Université Pierre et Marie Curie, Paris, France
-
Magali THOMÉ : Institut des nanosciences de Paris, UMR 7588, CNRS, Université Pierre et Marie Curie, Paris, France
-
Eloise VAN HOOIJDONK : Laboratoire de physique des solides, Biophotonic Group, Université de Namur, Namur, Belgique
-
Annick BAY : Laboratoire de physique des solides, Biophotonic Group, Université de Namur, Namur, Belgique
INTRODUCTION
Domaine : Photonique, optique des solides, énergie solaire
Degré de diffusion de la technologie : Émergence | Croissance | Maturité
Technologies impliquées : Spectroscopie, CVD, PVD
Domaines d'application : Énergie solaire, LED, verre, cosmétique
Principaux acteurs français : CNRS, universités
Industriels : Saint Gobain, Chanel
Contact : [email protected]
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Éco-conception et innovation responsable
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Conclusion
Tous les organismes vivants, les insectes comme les hommes, sont soumis à des contraintes sensiblement identiques. Tous deux prospèrent sur terre et ont donc trouvé, au fil des millénaires, des moyens d'y faire face. Les approches des deux groupes sont cependant très différentes, voire opposées. Dans le domaine énergétique, depuis la maîtrise du feu, l'homme s'est assez rapidement détourné des énergies renouvelables difficilement maîtrisables. Ce n'est pas le cas des autres organismes vivants, et en particulier des insectes, qui doivent faire face aux différents aléas de la vie avec des moyens réduits. Des structures sont apparues, notamment à l'échelle nanométrique, qui permettent de gérer les échanges entre l'organisme – un milieu relativement stable d'un point de vue physico-chimique – et l'extérieur, extrêmement variable. Passées au travers du redoutable filtre de la sélection naturelle, celles qui sont parvenues jusqu'à nous ont démontré leur efficacité. Que nous apprennent-elles ? Tout d'abord, qu'une « bonne » structure est toujours multifonctionnelle et qu'aucune des fonctions ne prévaut sur les autres : on parle d'« optimisation moyenne ». Ensuite qu'il faut très peu d'éléments chimiques pour les construire. Ces deux contraintes cumulées – faire beaucoup avec peu – imposent la complexité topologique des structures. Désordre et multi-échelle sont les maîtres-mots des structures naturelles. Dans leurs rapports avec la lumière, les insectes ont développé des structures permettant de gérer toutes les configurations envisageables : absorption, transmission, extraction. Ces mêmes structures présentent par ailleurs des propriétés non liées directement à l'électromagnétisme, mais qui participent à leur optimisation globale : mécanique, hydrophobie, anti-adhésion... Les insectes sont ainsi parvenus à résoudre de nombreux problèmes qui sont encore pour nous sans solutions satisfaisantes. Leur approche est assez éloignée de la nôtre, en particulier par l'usage de la complexité et d'un désordre maîtrisé, et ils ont dans ces domaines bien des choses à nous apprendre. Nous avons, quant à nous, l'avantage d'avoir accès à la quasi-totalité des éléments chimiques (figure 20). En nous inspirant des structures naturelles et en en réalisant des copies avec nos matériaux, nous pourrons ainsi bénéficier...
Cet article fait partie de l’offre
Éco-conception et innovation responsable
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Conclusion
BIBLIOGRAPHIE
-
(1) - BERTHIER (S.) - Iridescence. Les couleurs physiques des insectes. - Springer, France (2008). Trad. « Iridescence. Physical colors of insects », Springer New York (2010).
-
(2) - BERTHIER (S.) - Photonique des Morphos. - Springer, France (2010).
-
(3) - BERTHIER (S.) - Spectral selectivity of the tropical butterfly Prepona meander : a remarkable example of temperature auto-regulation. - Appl. Phys. A, 80, p. 1397 (2003).
-
(4) - SAISON (T.), PEROZ (C.), CHAUVEAU (V.), BERTHIER (S.), SANDERGARD (E.), ARRIBART (H.) - Replication of butterfly wing and natural lotus leaf nanostructures by nanoimprint on silica sol-gel films. - Bioinsp. Biomim., 3, p. 046004 (2008).
-
(5) - BAY (A.), SARRAZIN (M.), VIGNERON (J.-P.) - Search for an optimal light-extracting surface derived from the morphology of a firefly lantern. - Opt. Eng., 52(2) (2013).
-
...
Cet article fait partie de l’offre
Éco-conception et innovation responsable
(138 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive